本文整理汇总了Python中six.moves.cPickle.load函数的典型用法代码示例。如果您正苦于以下问题:Python load函数的具体用法?Python load怎么用?Python load使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: sample
def sample(args):
with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f:
saved_args = cPickle.load(f)
with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f:
chars, vocab = cPickle.load(f)
model = Model(saved_args, True)
with tf.Session() as sess:
tf.initialize_all_variables().run()
saver = tf.train.Saver(tf.all_variables())
ckpt = tf.train.get_checkpoint_state(args.save_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
ts = model.sample(sess, chars, vocab, args.n, args.prime, args.sample)
print("Sampled Output\n")
print(ts)
print("Converting Text to Speech")
tts = gTTS(text=ts, lang='en-uk')
tts.save("ts.mp3")
audio = MP3("ts.mp3")
audio_length = audio.info.length
print("Speaker is Getting Ready")
mixer.init()
mixer.music.load('ts.mp3')
mixer.music.play()
time.sleep(audio_length+5)
示例2: Init
def Init(self):
TFunctionApprox.Init(self)
L= self.Locate
if self.Params['data_x'] != None:
self.DataX= pickle.load(open(L(self.Params['data_x']), 'rb'))
if self.Params['data_y'] != None:
self.DataY= pickle.load(open(L(self.Params['data_y']), 'rb'))
self.C= []
self.Closests= []
self.CDists= [] #Distance to the closest point
if self.Params['C'] != None:
self.C= copy.deepcopy(self.Params['C'])
if self.Params['Closests'] != None:
self.Closests= copy.deepcopy(self.Params['Closests'])
if self.Params['CDists'] != None:
self.CDists= copy.deepcopy(self.Params['CDists'])
if self.Options['kernel']=='l2g': #L2 norm Gaussian
self.kernel= Gaussian
self.dist= Dist
elif self.Options['kernel']=='maxg': #Max norm Gaussian
self.kernel= GaussianM
self.dist= DistM
else:
raise Exception('Undefined kernel type:',self.Options['kernel'])
self.lazy_copy= True #Assign True when DataX or DataY is updated.
self.CheckPredictability()
示例3: __init__
def __init__(self, path, random_seed, fold):
np.random.seed(random_seed)
self.path = path
self.linkfile = path + 'allPostLinkMap.pickle'
# self.edgelistfile = path + 'edgelist.txt'
self.labelfile = path + 'allPostLabelMap.pickle'
self.authorfile = path + 'allPostAuthorMap.pickle'
self.authorattrifile = path + 'allAuthorAttrisProc.pickle'
self.authorlinkfile = path + 'allAuthorLinks.pickle'
self.textfile = path + 'allUserTextSkip.pickle2'
self.foldfile = path + 'allFolds.pickle'
self.threadfile = path + 'allThreadPost.pickle'
self.embfile = path + 'node.emb'
self.fold = fold
self.nodes_infor = []
self.node_map = {}
with open(self.textfile, 'rb') as fin:
allTextEmbed = pickle.load(fin, encoding='latin1')
self.allTextMap = pickle.load(fin, encoding='latin1')
fin.close()
self.node_count = len(self.allTextMap)
for i in range(self.node_count):
self.add_node(i)
self.read_label()
self.read_text()
self.read_link()
self.label_count = len(self.label_map)
# print('label count:', self.label_count)
self.construct_data()
示例4: sample
def sample(args):
with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f:
saved_args = cPickle.load(f)
with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f:
chars, vocab = cPickle.load(f)
model = Model(saved_args, True)
val_loss_file = args.save_dir + '/val_loss.json'
with tf.Session() as sess:
saver = tf.train.Saver(tf.all_variables())
if os.path.exists(val_loss_file):
with open(val_loss_file, "r") as text_file:
text = text_file.read()
loss_json = json.loads(text)
losses = loss_json.keys()
losses.sort(key=lambda x: float(x))
loss = losses[0]
model_checkpoint_path = loss_json[loss]['checkpoint_path']
#print(model_checkpoint_path)
saver.restore(sess, model_checkpoint_path)
result = model.sample(sess, chars, vocab, args.n, args.prime, args.sample_rule, args.temperature)
print(result) #add this back in later, not sure why its not working
output = "/data/output/"+ str(int(time.time())) + ".txt"
with open(output, "w") as text_file:
text_file.write(result)
print(output)
示例5: load
def load(cls, fn, compress=True, *args, **kwargs):
if compress and not fn.strip().lower().endswith('.gz'):
fn = fn + '.gz'
assert os.path.isfile(fn), 'File %s does not exist.' % (fn,)
if compress:
return pickle.load(gzip.open(fn, 'rb'))
return pickle.load(open(fn, 'rb'))
示例6: _parse_file
def _parse_file(cls, path, pickle=False):
"""parse a .chain file into a list of the type [(L{Chain}, arr, arr, arr) ...]
:param fname: name of the file"""
fname = path
if fname.endswith(".gz"):
fname = path[:-3]
if fname.endswith('.pkl'):
#you asked for the pickled file. I'll give it to you
log.debug("loading pickled file %s ..." % fname)
return cPickle.load( open(fname) )
elif os.path.isfile("%s.pkl" % fname):
#there is a cached version I can give to you
log.info("loading pickled file %s.pkl ..." % fname)
if os.stat(path).st_mtime > os.stat("%s.pkl" % fname).st_mtime:
log.critical("*** pickled file %s.pkl is not up to date ***" % (path))
return cPickle.load( open("%s.pkl" % fname) )
data = fastLoadChain(path, cls._strfactory)
if pickle and not os.path.isfile('%s.pkl' % fname):
log.info("pckling to %s.pkl" % (fname))
with open('%s.pkl' % fname, 'wb') as fd:
cPickle.dump(data, fd)
return data
示例7: _pickle_load
def _pickle_load(f):
if sys.version_info > (3, ):
# python3
return pickle.load(f, encoding='latin-1')
else:
# python2
return pickle.load(f)
示例8: read_pickle_from_file
def read_pickle_from_file(filename):
with tf.gfile.Open(filename, 'rb') as f:
if sys.version_info >= (3, 0):
data_dict = pickle.load(f, encoding='bytes')
else:
data_dict = pickle.load(f)
return data_dict
示例9: test_read_backward_compatibility
def test_read_backward_compatibility():
"""Test backwards compatibility with a pickled file that's created with Python 2.7.3,
Numpy 1.7.1_ahl2 and Pandas 0.14.1
"""
fname = path.join(path.dirname(__file__), "data", "test-data.pkl")
# For newer versions; verify that unpickling fails when using cPickle
if PANDAS_VERSION >= LooseVersion("0.16.1"):
if sys.version_info[0] >= 3:
with pytest.raises(UnicodeDecodeError), open(fname) as fh:
cPickle.load(fh)
else:
with pytest.raises(TypeError), open(fname) as fh:
cPickle.load(fh)
# Verify that PickleStore() uses a backwards compatible unpickler.
store = PickleStore()
with open(fname) as fh:
# PickleStore compresses data with lz4
version = {'blob': compressHC(fh.read())}
df = store.read(sentinel.arctic_lib, version, sentinel.symbol)
expected = pd.DataFrame(range(4), pd.date_range(start="20150101", periods=4))
assert (df == expected).all().all()
示例10: creator
def creator(path):
archive_path = download.cached_download(url)
train_x = numpy.empty((5, 10000, 3072), dtype=numpy.uint8)
train_y = numpy.empty((5, 10000), dtype=numpy.uint8)
test_y = numpy.empty(10000, dtype=numpy.uint8)
dir_name = '{}-batches-py'.format(name)
with tarfile.open(archive_path, 'r:gz') as archive:
# training set
for i in range(5):
file_name = '{}/data_batch_{}'.format(dir_name, i + 1)
d = pickle.load(archive.extractfile(file_name))
train_x[i] = d['data']
train_y[i] = d['labels']
# test set
file_name = '{}/test_batch'.format(dir_name)
d = pickle.load(archive.extractfile(file_name))
test_x = d['data']
test_y[...] = d['labels'] # copy to array
train_x = train_x.reshape(50000, 3072)
train_y = train_y.reshape(50000)
numpy.savez_compressed(path, train_x=train_x, train_y=train_y,
test_x=test_x, test_y=test_y)
return {'train_x': train_x, 'train_y': train_y,
'test_x': test_x, 'test_y': test_y}
示例11: load_batch
def load_batch(fpath, label_key='labels'):
"""Internal utility for parsing CIFAR data.
# Arguments
fpath: path the file to parse.
label_key: key for label data in the retrieve
dictionary.
# Returns
A tuple `(data, labels)`.
"""
f = open(fpath, 'rb')
if sys.version_info < (3,):
d = cPickle.load(f)
else:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
f.close()
data = d['data']
labels = d[label_key]
data = data.reshape(data.shape[0], 3, 32, 32)
return data, labels
示例12: __init__
def __init__(self, experiment_name):
self.engine = experiment.Experiment.get_engine(
experiment_name, "sqlite"
)
SQLAlchemySession.configure(bind=self.engine)
self.session = SQLAlchemySession()
self.hdf5_file = h5py.File(
os.path.join(experiment_name, "phenotypes.hdf5"),
"r"
)
self.config = os.path.join(experiment_name, "configuration.yaml")
if not os.path.isfile(self.config):
self.config = None
# Experiment info.
filename = os.path.join(experiment_name, "experiment_info.pkl")
with open(filename, "rb") as f:
self.info = pickle.load(f)
# Task info.
self.task_info = {}
path = os.path.join(experiment_name, "tasks")
for task_dir in os.listdir(path):
info_path = os.path.join(path, task_dir, "task_info.pkl")
if os.path.isfile(info_path):
with open(info_path, "rb") as f:
self.task_info[task_dir] = pickle.load(f)
# Correlation matrix.
filename = os.path.join(experiment_name, "phen_correlation_matrix.npy")
self.correlation_matrix = np.load(filename)
示例13: main
def main():
# Reading the configuration from stdin
classifier = pickle.load(sys.stdin)
info = pickle.load(sys.stdin)
assert isinstance(classifier, tmva.TMVAClassifier) or isinstance(classifier, tmva.TMVARegressor)
assert isinstance(info, tmva._AdditionalInformation)
tmva_process(classifier, info)
示例14: get_data
def get_data():
"""Get data in form suitable for episodic training.
Returns:
Train and test data as dictionaries mapping
label to list of examples.
"""
with tf.gfile.GFile(DATA_FILE_FORMAT % 'train', 'rb') as f:
processed_train_data = pickle.load(f)
with tf.gfile.GFile(DATA_FILE_FORMAT % 'test', 'rb') as f:
processed_test_data = pickle.load(f)
train_data = {}
test_data = {}
for data, processed_data in zip([train_data, test_data],
[processed_train_data, processed_test_data]):
for image, label in zip(processed_data['images'],
processed_data['labels']):
if label not in data:
data[label] = []
data[label].append(image.reshape([-1]).astype('float32'))
intersection = set(train_data.keys()) & set(test_data.keys())
assert not intersection, 'Train and test data intersect.'
ok_num_examples = [len(ll) == 20 for _, ll in train_data.items()]
assert all(ok_num_examples), 'Bad number of examples in train data.'
ok_num_examples = [len(ll) == 20 for _, ll in test_data.items()]
assert all(ok_num_examples), 'Bad number of examples in test data.'
logging.info('Number of labels in train data: %d.', len(train_data))
logging.info('Number of labels in test data: %d.', len(test_data))
return train_data, test_data
示例15: store_and_or_load_data
def store_and_or_load_data(dataset_info, outputdir):
if dataset_info.endswith('.pkl'):
save_path = dataset_info
else:
dataset = os.path.basename(dataset_info)
data_dir = os.path.dirname(dataset_info)
save_path = os.path.join(outputdir, dataset + '_Manager.pkl')
if not os.path.exists(save_path):
lock = lockfile.LockFile(save_path)
while not lock.i_am_locking():
try:
lock.acquire(timeout=60) # wait up to 60 seconds
except lockfile.LockTimeout:
lock.break_lock()
lock.acquire()
print('I locked', lock.path)
# It is not yet sure, whether the file already exists
try:
if not os.path.exists(save_path):
D = CompetitionDataManager(dataset, data_dir,
verbose=True,
encode_labels=True)
fh = open(save_path, 'w')
pickle.dump(D, fh, -1)
fh.close()
else:
D = pickle.load(open(save_path, 'r'))
except Exception:
raise
finally:
lock.release()
else:
D = pickle.load(open(save_path, 'r'))
return D