当前位置: 首页>>代码示例>>Python>>正文


Python builtins.max函数代码示例

本文整理汇总了Python中six.moves.builtins.max函数的典型用法代码示例。如果您正苦于以下问题:Python max函数的具体用法?Python max怎么用?Python max使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了max函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: perform

    def perform(self, node, inp, out):
        x, = inp
        z, = out
        if len(x.shape) != 4:
            raise NotImplementedError(
                'Pool requires 4D input for now')
        z_shape = self.out_shape(x.shape, self.ds, self.ignore_border, self.st,
                                 self.padding)
        if not self.ignore_border:
            assert z_shape[2] > 0
            assert z_shape[3] > 0
        if (z[0] is None) or (z[0].shape != z_shape):
            z[0] = numpy.empty(z_shape, dtype=x.dtype)
        zz = z[0]
        # number of pooling output rows
        pr = zz.shape[-2]
        # number of pooling output cols
        pc = zz.shape[-1]
        ds0, ds1 = self.ds
        st0, st1 = self.st
        pad_h = self.padding[0]
        pad_w = self.padding[1]
        img_rows = x.shape[-2] + 2 * pad_h
        img_cols = x.shape[-1] + 2 * pad_w
        inc_pad = self.mode == 'average_inc_pad'

        # pad the image
        if self.padding != (0, 0):
            y = numpy.zeros(
                (x.shape[0], x.shape[1], img_rows, img_cols),
                dtype=x.dtype)
            y[:, :, pad_h:(img_rows - pad_h), pad_w:(img_cols - pad_w)] = x
        else:
            y = x
        func = numpy.max
        if self.mode == 'sum':
            func = numpy.sum
        elif self.mode != 'max':
            func = numpy.average

        for n in xrange(x.shape[0]):
            for k in xrange(x.shape[1]):
                for r in xrange(pr):
                    row_st = r * st0
                    row_end = builtins.min(row_st + ds0, img_rows)
                    if not inc_pad:
                        row_st = builtins.max(row_st, self.padding[0])
                        row_end = builtins.min(row_end, x.shape[-2] + pad_h)
                    for c in xrange(pc):
                        col_st = c * st1
                        col_end = builtins.min(col_st + ds1, img_cols)
                        if not inc_pad:
                            col_st = builtins.max(col_st, self.padding[1])
                            col_end = builtins.min(col_end,
                                                   x.shape[-1] + pad_w)
                        zz[n, k, r, c] = func(y[
                            n, k, row_st:row_end, col_st:col_end])
开发者ID:AlOa,项目名称:Theano,代码行数:57,代码来源:pool.py

示例2: perform

    def perform(self, node, inp, out):
        if self.mode == 'average_exc_pad' and self.padding != (0, 0):
            raise NotImplementedError()
        x, gz = inp
        gx_stg, = out
        z_shape = self.out_shape(x.shape, self.ds, self.ignore_border, self.st,
                                 self.padding)
        if (gx_stg[0] is None) or (gx_stg[0].shape != z_shape):
            gx_stg[0] = numpy.empty(z_shape, dtype=x.dtype)
        zz = gx_stg[0]
        # number of pooling output rows
        pr = zz.shape[-2]
        # number of pooling output cols
        pc = zz.shape[-1]
        ds0, ds1 = self.ds
        st0, st1 = self.st
        pad_h = self.padding[0]
        pad_w = self.padding[1]
        img_rows = x.shape[-2] + 2 * pad_h
        img_cols = x.shape[-1] + 2 * pad_w
        inc_pad = self.mode == 'average_inc_pad'
        sum_mode = self.mode == 'sum'

        # pad the image
        if self.padding != (0, 0):
            y = numpy.zeros(
                (x.shape[0], x.shape[1], img_rows, img_cols),
                dtype=x.dtype)
            y[:, :, pad_h:(img_rows - pad_h), pad_w:(img_cols - pad_w)] = x
        else:
            y = x
        gx = numpy.zeros_like(y)
        for n in xrange(x.shape[0]):
            for k in xrange(x.shape[1]):
                for r in xrange(pr):
                    if sum_mode or inc_pad:
                        row_st = r * st0
                    else:
                        row_st = builtins.max(r * st0, self.padding[0])
                    row_end = builtins.min(row_st + ds0, img_rows)
                    for c in xrange(pc):
                        if sum_mode or inc_pad:
                            col_st = c * st1
                        else:
                            col_st = builtins.max(c * st1,
                                                  self.padding[1])
                        col_end = builtins.min(col_st + ds1, img_cols)
                        if sum_mode:
                            val = gz[n, k, r, c]
                        else:
                            val = gz[n, k, r, c] / ((row_end - row_st) *
                                                    (col_end - col_st))
                        gx[n, k, row_st:row_end, col_st:col_end] += val
        # unpad the image
        gx = gx[:, :, pad_h:(img_rows - pad_h), pad_w:(img_cols - pad_w)]
        gx_stg[0] = gx
开发者ID:ADNbox,项目名称:Theano,代码行数:56,代码来源:pool.py

示例3: perform

    def perform(self, node, inp, out):
        x, = inp
        z, ind = out
        ind = numpy.zeros_like(x)
        if len(x.shape) != 4:
            raise NotImplementedError('Pool requires 4D input for now')
        z_shape = self.out_shape(x.shape, self.ds, self.ignore_border, self.st,
                                 self.padding)
        if (z[0] is None) or (z[0].shape != z_shape):
            z[0] = numpy.empty(z_shape, dtype=x.dtype)
        zz = z[0]
        # number of pooling output rows
        pr = zz.shape[-2]
        # number of pooling output cols
        pc = zz.shape[-1]
        ds0, ds1 = self.ds
        st0, st1 = self.st
        pad_h = self.padding[0]
        pad_w = self.padding[1]
        img_rows = x.shape[-2] + 2 * pad_h
        img_cols = x.shape[-1] + 2 * pad_w
        inc_pad = 0

        # pad the image
        if self.padding != (0, 0):
            y = numpy.zeros(
                (x.shape[0], x.shape[1], img_rows, img_cols),
                dtype=x.dtype)
            y[:, :, pad_h:(img_rows - pad_h), pad_w:(img_cols - pad_w)] = x
        else:
            y = x

        for n in xrange(x.shape[0]):
            for k in xrange(x.shape[1]):
                for r in xrange(pr):
                    row_st = r * st0
                    row_end = builtins.min(row_st + ds0, img_rows)
                    if not inc_pad:
                        row_st = builtins.max(row_st, self.padding[0])
                        row_end = builtins.min(row_end, x.shape[-2] + pad_h)
                    for c in xrange(pc):
                        col_st = c * st1
                        col_end = builtins.min(col_st + ds1, img_cols)
                        if not inc_pad:
                            col_st = builtins.max(col_st, self.padding[1])
                            col_end = builtins.min(col_end,
                                                   x.shape[-1] + pad_w)
                        cur_max = y[n, k, row_st, col_st]
                        max_r, max_c = row_st, col_st
                        for rr in xrange(row_st, row_end):
                            for cc in xrange(col_st, col_end):
                                if y[n, k, rr, cc] > cur_max:
                                    cur_max = y[n, k, rr, cc]
                                    max_r, max_c = rr, cc
                        zz[n, k, r, c] = cur_max
                        ind[n, k, max_r, max_c] = 1
开发者ID:imlab-uiip,项目名称:keras-segnet,代码行数:56,代码来源:mpool.py

示例4: numpy_max_pool_2d_stride_padding

    def numpy_max_pool_2d_stride_padding(
            x, ds, ignore_border=True, st=None, padding=(0, 0), mode='max'):
        assert ignore_border
        pad_h = padding[0]
        pad_w = padding[1]
        h = x.shape[-2]
        w = x.shape[-1]
        assert ds[0] > pad_h
        assert ds[1] > pad_w

        def pad_img(x):
            y = numpy.zeros(
                (x.shape[0], x.shape[1],
                 x.shape[2] + pad_h * 2, x.shape[3] + pad_w * 2),
                dtype=x.dtype)
            y[:, :, pad_h:(x.shape[2] + pad_h), pad_w:(x.shape[3] + pad_w)] = x

            return y
        img_rows = h + 2 * pad_h
        img_cols = w + 2 * pad_w
        out_r = (img_rows - ds[0]) // st[0] + 1
        out_c = (img_cols - ds[1]) // st[1] + 1
        out_shp = list(x.shape[:-2])
        out_shp.append(out_r)
        out_shp.append(out_c)
        ds0, ds1 = ds
        st0, st1 = st
        output_val = numpy.zeros(out_shp)
        y = pad_img(x)
        func = numpy.max
        if mode == 'sum':
            func = numpy.sum
        elif mode != 'max':
            func = numpy.average
        inc_pad = mode == 'average_inc_pad'

        for k in numpy.ndindex(*x.shape[:-2]):
            for i in range(output_val.shape[-2]):
                ii_st = i * st[0]
                ii_end = builtins.min(ii_st + ds[0], img_rows)
                if not inc_pad:
                    ii_st = builtins.max(ii_st, pad_h)
                    ii_end = builtins.min(ii_end, h + pad_h)
                for j in range(output_val.shape[-1]):
                    jj_st = j * st[1]
                    jj_end = builtins.min(jj_st + ds[1], img_cols)
                    if not inc_pad:
                        jj_st = builtins.max(jj_st, pad_w)
                        jj_end = builtins.min(jj_end, w + pad_w)
                    patch = y[k][ii_st:ii_end, jj_st:jj_end]
                    output_val[k][i, j] = func(patch)
        return output_val
开发者ID:12190143,项目名称:Theano,代码行数:52,代码来源:test_pool.py

示例5: restricted

    def restricted(self, min=None, max=None):
        """
        Returns the power series restricted to the coefficients starting at
        min and going up to, but not including max. If min is not
        specified, then it is assumed to be zero. If max is not specified,
        then it is assumed to be infinity.

        EXAMPLES::

            sage: L = LazyPowerSeriesRing(QQ)
            sage: a = L([1])
            sage: a.restricted().coefficients(10)
            [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
            sage: a.restricted(min=2).coefficients(10)
            [0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
            sage: a.restricted(max=5).coefficients(10)
            [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
            sage: a.restricted(min=2, max=6).coefficients(10)
            [0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
        """
        from six.moves import builtins
        if ((min is None and max is None) or
            (max is None and self.get_aorder() >= min)):
            return self

        return self._new(partial(self._restricted_gen, min, max),
                         lambda ao: builtins.max(ao, min), self)
开发者ID:drupel,项目名称:sage,代码行数:27,代码来源:series.py

示例6: max

def max(xs, y_from_x=lambda x: x):
    '''
    >>> range(10) | max()
    9
    >>> range(10) | max(lambda x: -x)
    0
    '''
    return __builtins__.max(y_from_x(x) for x in xs)
开发者ID:hachibeeDI,项目名称:masala,代码行数:8,代码来源:linq_ext.py

示例7: perform

    def perform(self, node, inp, out):
        assert self.mode == 'max'
        x, maxout, gz, ws, stride, pad = inp
        gx_stg, = out
        assert ws.shape == stride.shape == pad.shape == (2,)
        # number of pooling output rows
        pr = maxout.shape[-2]
        # number of pooling output cols
        pc = maxout.shape[-1]
        ws0, ws1 = ws
        st0, st1 = stride
        pad_h = pad[0]
        pad_w = pad[1]
        img_rows = x.shape[-2] + 2 * pad_h
        img_cols = x.shape[-1] + 2 * pad_w

        # pad the image
        if (pad_h, pad_w) != (0, 0):
            y = numpy.zeros(
                (x.shape[0], x.shape[1], img_rows, img_cols),
                dtype=x.dtype)
            y[:, :, pad_h:(img_rows - pad_h), pad_w:(img_cols - pad_w)] = x
        else:
            y = x
        gx = numpy.zeros_like(y)
        for n in xrange(x.shape[0]):
            for k in xrange(x.shape[1]):
                for r in xrange(pr):
                    row_st = builtins.max(r * st0, pad_h)
                    row_end = builtins.min(row_st + ws0, img_rows)
                    for c in xrange(pc):
                        col_st = builtins.max(c * st1, pad_w)
                        col_end = builtins.min(col_st + ws1, img_cols)
                        for row_ind in xrange(row_st, row_end):
                            for col_ind in xrange(col_st, col_end):
                                if (maxout[n, k, r, c] == y[n, k, row_ind, col_ind]):
                                    gx[n, k, row_ind, col_ind] += gz[n, k, r, c]
        # unpad the image
        gx = gx[:, :, pad_h:(img_rows - pad_h), pad_w:(img_cols - pad_w)]
        gx_stg[0] = gx
开发者ID:intel,项目名称:theano,代码行数:40,代码来源:pool.py

示例8: numpy_max_pool_nd_stride_padding

    def numpy_max_pool_nd_stride_padding(
            input, ds, ignore_border=True, st=None, padding=None, mode='max'):
        assert ignore_border
        nd = len(ds)
        if padding is None:
            padding = (0,) * nd
        if st is None:
            st = (0,) * nd
        assert len(padding) == len(ds) == len(st)
        assert all(ds[i] > padding[i] for i in range(nd))

        def pad_img(x):
            # initialize padded input
            y = numpy.zeros(
                x.shape[0:-nd] +
                tuple(x.shape[-nd + i] + padding[i] * 2 for i in range(nd)),
                dtype=x.dtype)
            # place the unpadded input in the center
            block = ((slice(None),) * (len(x.shape) - nd) +
                     tuple(slice(padding[i], x.shape[-nd + i] + padding[i])
                           for i in range(nd)))
            y[block] = x
            return y

        pad_img_shp = list(input.shape[:-nd])
        out_shp = list(input.shape[:-nd])
        for i in range(nd):
            padded_size = input.shape[-nd + i] + 2 * padding[i]
            pad_img_shp.append(padded_size)
            out_shp.append((padded_size - ds[i]) // st[i] + 1)
        output_val = numpy.zeros(out_shp)
        padded_input = pad_img(input)
        func = numpy.max
        if mode == 'sum':
            func = numpy.sum
        elif mode != 'max':
            func = numpy.average
        inc_pad = mode == 'average_inc_pad'

        for l in numpy.ndindex(*input.shape[:-nd]):
            for r in numpy.ndindex(*output_val.shape[-nd:]):
                region = []
                for i in range(nd):
                    r_st = r[i] * st[i]
                    r_end = builtins.min(r_st + ds[i], pad_img_shp[-nd + i])
                    if not inc_pad:
                        r_st = builtins.max(r_st, padding[i])
                        r_end = builtins.min(r_end, input.shape[-nd + i] + padding[i])
                    region.append(slice(r_st, r_end))
                patch = padded_input[l][region]
                output_val[l][r] = func(patch)
        return output_val
开发者ID:wgapl,项目名称:Theano,代码行数:52,代码来源:test_pool.py

示例9: perform

    def perform(self, node, inp, out):
        assert self.mode == "max"
        x, maxout, gz = inp
        gx_stg, = out
        # number of pooling output rows
        pr = maxout.shape[-2]
        # number of pooling output cols
        pc = maxout.shape[-1]
        ds0, ds1 = self.ds
        st0, st1 = self.st
        pad_h = self.padding[0]
        pad_w = self.padding[1]
        img_rows = x.shape[-2] + 2 * pad_h
        img_cols = x.shape[-1] + 2 * pad_w

        # pad the image
        if self.padding != (0, 0):
            y = numpy.zeros((x.shape[0], x.shape[1], img_rows, img_cols), dtype=x.dtype)
            y[:, :, pad_h : (img_rows - pad_h), pad_w : (img_cols - pad_w)] = x
        else:
            y = x
        gx = numpy.zeros_like(y)
        for n in xrange(x.shape[0]):
            for k in xrange(x.shape[1]):
                for r in xrange(pr):
                    row_st = builtins.max(r * st0, self.padding[0])
                    row_end = builtins.min(row_st + ds0, img_rows)
                    for c in xrange(pc):
                        col_st = builtins.max(c * st1, self.padding[1])
                        col_end = builtins.min(col_st + ds1, img_cols)
                        for row_ind in xrange(row_st, row_end):
                            for col_ind in xrange(col_st, col_end):
                                if maxout[n, k, r, c] == y[n, k, row_ind, col_ind]:
                                    gx[n, k, row_ind, col_ind] += gz[n, k, r, c]
        # unpad the image
        gx = gx[:, :, pad_h : (img_rows - pad_h), pad_w : (img_cols - pad_w)]
        gx_stg[0] = gx
开发者ID:andreh7,项目名称:Theano,代码行数:37,代码来源:pool.py

示例10: numpy_pool_2d_stride_padding

    def numpy_pool_2d_stride_padding(
            x, ds, ignore_border=True, st=None, padding=(0, 0), mode='max'):
        assert (ignore_border is False)

        in_h = x.shape[-2]
        in_w = x.shape[-1]
        kernel_h = ds[0]
        kernel_w = ds[1]
        stride_h = st[0]
        stride_w = st[1]
        pad_h = padding[0]
        pad_w = padding[1]

        assert ds[0] > pad_h
        assert ds[1] > pad_w

        def pad_img(x):
            y = numpy.zeros(
                (x.shape[0], x.shape[1],
                 x.shape[2] + pad_h * 2, x.shape[3] + pad_w * 2),
                dtype=x.dtype)
            y[:, :, pad_h:(x.shape[2] + pad_h), pad_w:(x.shape[3] + pad_w)] = x

            return y

        h = in_h + 2 * pad_h
        w = in_w + 2 * pad_w

        out_h = int(math.ceil((float)(h - kernel_h) / stride_h)) + 1
        out_w = int(math.ceil((float)(w - kernel_w) / stride_w)) + 1

        out_shp = list(x.shape[:-2])
        out_shp.extend([out_h, out_w])

        output_val = numpy.zeros(out_shp)

        y = pad_img(x)
        func = numpy.max
        if mode == 'sum':
            func = numpy.sum
        elif mode != 'max':
            func = numpy.average
        inc_pad = mode == 'average_inc_pad'

        for k in numpy.ndindex(*x.shape[:-2]):
            for i in range(output_val.shape[-2]):
                ii_st = i * st[0]
                if ii_st > h:
                    print ('ii_st > h!!!')
                    continue
                ii_end = builtins.min(ii_st + ds[0], h)
                if not inc_pad:
                    ii_st = builtins.max(ii_st, pad_h)
                    ii_end = builtins.min(ii_end, in_h + pad_h)
                for j in range(output_val.shape[-1]):
                    jj_st = j * st[1]
                    if jj_st > w:
                        print ('jj_st > w!!!')
                        continue
                    jj_end = builtins.min(jj_st + ds[1], w)
                    if not inc_pad:
                        jj_st = builtins.max(jj_st, pad_w)
                        jj_end = builtins.min(jj_end, in_w + pad_w)
                    patch = y[k][ii_st:ii_end, jj_st:jj_end]
                    output_val[k][i, j] = func(patch)
        return output_val
开发者ID:intel,项目名称:theano,代码行数:66,代码来源:test_pool.py

示例11: perform

    def perform(self, node, inp, out):
        if self.mode not in ('max', 'sum') and self.padding != (0, 0):
            raise NotImplementedError()
        x, maxout, gz = inp
        gx_stg, = out
        # number of pooling output rows
        pr = maxout.shape[-2]
        # number of pooling output cols
        pc = maxout.shape[-1]
        ds0, ds1 = self.ds
        st0, st1 = self.st
        pad_h = self.padding[0]
        pad_w = self.padding[1]
        img_rows = x.shape[-2] + 2 * pad_h
        img_cols = x.shape[-1] + 2 * pad_w
        inc_pad = self.mode == 'average_inc_pad'
        sum_mode = self.mode == 'sum'

        # pad the image
        if self.padding != (0, 0):
            y = numpy.zeros(
                (x.shape[0], x.shape[1], img_rows, img_cols),
                dtype=x.dtype)
            y[:, :, pad_h:(img_rows-pad_h), pad_w:(img_cols-pad_w)] = x
        else:
            y = x
        gx = numpy.zeros_like(y)
        if self.mode == 'max':
            for n in xrange(x.shape[0]):
                for k in xrange(x.shape[1]):
                    for r in xrange(pr):
                        row_st = builtins.max(r * st0, self.padding[0])
                        row_end = builtins.min(row_st + ds0, img_rows)
                        for c in xrange(pc):
                            col_st = builtins.max(c * st1, self.padding[1])
                            col_end = builtins.min(col_st + ds1, img_cols)
                            for row_ind in xrange(row_st, row_end):
                                for col_ind in xrange(col_st, col_end):
                                    if (maxout[n, k, r, c] == y[n, k, row_ind, col_ind]):
                                        gx[n, k, row_ind, col_ind] += gz[n, k, r, c]
        else:
            for n in xrange(x.shape[0]):
                for k in xrange(x.shape[1]):
                    for r in xrange(pr):
                        if sum_mode or inc_pad:
                            row_st = r * st0
                        else:
                            row_st = builtins.max(r * st0, self.padding[0])
                        row_end = builtins.min(row_st + ds0, img_rows)
                        for c in xrange(pc):
                            if sum_mode or inc_pad:
                                col_st = c * st1
                            else:
                                col_st = builtins.max(c * st1,
                                                         self.padding[1])
                            col_end = builtins.min(col_st + ds1, img_cols)
                            if sum_mode:
                              val = gz[n, k, r, c]
                            else:
                              val = gz[n, k, r, c] / ((row_end - row_st) *
                                                      (col_end - col_st))
                            gx[n, k, row_st:row_end, col_st:col_end] += val
        # unpad the image
        gx = gx[:, :, pad_h:(img_rows-pad_h), pad_w:(img_cols-pad_w)]
        gx_stg[0] = gx
开发者ID:harlouci,项目名称:Theano,代码行数:65,代码来源:downsample.py


注:本文中的six.moves.builtins.max函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。