当前位置: 首页>>代码示例>>Python>>正文


Python moves.xrange函数代码示例

本文整理汇总了Python中six.moves.xrange函数的典型用法代码示例。如果您正苦于以下问题:Python xrange函数的具体用法?Python xrange怎么用?Python xrange使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了xrange函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: next_batch

    def next_batch(self):
        enc_batch = np.zeros((self._batch_size, self._enc_timesteps), dtype=np.int32)
        enc_input_lens = np.zeros(self._batch_size, dtype=np.int32)
        dec_batch = np.zeros((self._batch_size, self._dec_timesteps), dtype=np.int32)
        dec_output_lens = np.zeros(self._batch_size, dtype=np.int32)
        target_batch = np.zeros((self._batch_size, self._dec_timesteps), dtype=np.int32)
        loss_weights = np.zeros((self._batch_size, self._dec_timesteps), dtype=np.float32)
        origin_articles = ['None'] * self._batch_size
        origin_abstracts = ['None'] * self._batch_size

        buckets = self._bucket_input_queue.get()
        for i in xrange(self._batch_size):
            (enc_inputs, dec_inputs, targets, enc_input_len, dec_output_len, article, abstract) = buckets[i]

            origin_articles[i] = article
            origin_abstracts[i] = abstract
            enc_input_lens[i] = enc_input_len
            dec_output_lens[i] = dec_output_len
            enc_batch[i, :] = enc_inputs[:]
            dec_batch[i, :] = dec_inputs[:]
            target_batch[i, :] = targets[:]

            for j in xrange(dec_output_len):
                loss_weights[i][j] = 1

        return (
            enc_batch, dec_batch, target_batch, enc_input_lens, dec_output_lens, loss_weights,
            origin_articles, origin_abstracts
        )
开发者ID:ericxsun,项目名称:tflearn,代码行数:29,代码来源:batch_reader.py

示例2: get_run_op

def get_run_op():
  # Create an optimizer that performs gradient descent.
  #opt = tf.train.GradientDescentOptimizer(learning_rate=0.01)
  slice_size = FLAGS.batch_size / FLAGS.num_cuts
  print('Slice size:{}'.format(slice_size))
  data = None
  label = None
  last_fc = [tf.no_op()]
  with tf.device('/gpu:0'):
    data = tf.get_variable(
        name = 'data',
        shape=[slice_size, FLAGS.hidden_size],
        trainable=False)
    '''
    label = tf.get_variable(
        name = 'label',
        shape = [slice_size, FLAGS.hidden_size],
        trainable=False))
    with tf.variable_scope('fc_in'):
      weight_in = tf.zeros([1000, FLAGS.hidden_size])
      for k in xrange(FLAGS.num_cuts):
        with tf.control_dependencies([last_fc[-1]]):
            last_fc.append(tf.matmul(data[k+1], weight_in))
    '''
  for i in xrange(FLAGS.num_cuts):
    last_fc.append(data)
  for i in xrange(FLAGS.num_layers):
    dev = '/gpu:%d' % (i * FLAGS.num_gpus / FLAGS.num_layers)
    with tf.device(dev), scopes.arg_scope([variables.variable], device=dev):
      tmp_fc = [tf.no_op()]
      with tf.variable_scope('fc%d' % i):
        w = tf.get_variable(
            name='w',
            shape=[FLAGS.hidden_size, FLAGS.hidden_size],
            trainable=True)
        for k in xrange(FLAGS.num_cuts):
          with tf.control_dependencies([tmp_fc[-1]]):
            tmp_fc.append(tf.matmul(last_fc[k+1], w))
      last_fc = tmp_fc
      if i == FLAGS.num_layers - 1:
        with tf.control_dependencies(last_fc):
          train_op = tf.no_op()
  '''
  with tf.device('/gpu:%d' % (FLAGS.num_gpus - 1)):
    tmp_fc = [tf.no_op()]
    with tf.variable_scope('fc_out'):
      weight_out = tf.zeros([FLAGS.hidden_size, 1000])
      for k in xrange(FLAGS.num_cuts):
        with tf.control_dependencies([tmp_fc[-1]]):
          tmp_fc.append(tf.matmul(last_fc[k+1], weight_out))
    last_fc = tmp_fc
  loss = tf.nn_softmax_cross_entropy_with_logits(last_fc, labels, name='xentropy')
  grads = opt.compute_gradients(loss)
  apply_gradient_op = opt.apply_gradients(grads)

  train_op = tf.group(apply_gradient_op)
  '''
  init_op = tf.initialize_all_variables()

  return init_op, train_op
开发者ID:houcy,项目名称:models,代码行数:60,代码来源:pipelining.py

示例3: _shapes

def _shapes(tensor_list_list, shapes, enqueue_many):
  """Calculate and merge the shapes of incoming tensors.

  Args:
    tensor_list_list: List of tensor lists.
    shapes: List of shape tuples corresponding to tensors within the lists.
    enqueue_many: Boolean describing whether shapes will be enqueued as
      batches or individual entries.

  Returns:
    A list of shapes aggregating shape inference info from `tensor_list_list`,
    or returning `shapes` if it is not `None`.

  Raises:
    ValueError: If any of the inferred shapes in `tensor_list_list` lack a
      well defined rank.
  """
  if shapes is None:
    len0 = len(tensor_list_list[0])

    for tl in tensor_list_list:
      for i in xrange(len0):
        if tl[i].get_shape().ndims is None:
          raise ValueError("Cannot infer Tensor's rank: %s" % tl[i])

    shapes = [_merge_shapes(
        [tl[i].get_shape().as_list() for tl in tensor_list_list], enqueue_many)
              for i in xrange(len0)]
  return shapes
开发者ID:marevol,项目名称:tensorflow,代码行数:29,代码来源:input.py

示例4: write_to_buffer

 def write_to_buffer(self, buffer, colors=None):
     if self.mode == MODE_NUMBER:
         for i in xrange(0, len(self.data), 3):
             chars = self.data[i:i + 3]
             bit_length = NUMBER_LENGTH[len(chars)]
             color = self._getColor(i, colors)
             buffer.put(int(chars), bit_length, color)
     elif self.mode == MODE_ALPHA_NUM:
         for i in xrange(0, len(self.data), 2):
             chars = self.data[i:i + 2]
             color = self._getColor(i, colors)
             if len(chars) > 1:
                 buffer.put(
                     ALPHA_NUM.find(chars[0]) * 45 +
                     ALPHA_NUM.find(chars[1]), 11, color)
             else:
                 buffer.put(ALPHA_NUM.find(chars), 6, color)
     else:
         if six.PY3:
             # Iterating a bytestring in Python 3 returns an integer,
             # no need to ord().
             data = self.data
         else:
             data = [ord(c) for c in self.data]
         for i, c in enumerate(data):
             color = self._getColor(i, colors)
             buffer.put(c, 8, color)
开发者ID:assafnativ,项目名称:python-qrcode,代码行数:27,代码来源:util.py

示例5: eval

  def eval(self):
    """Evaluate analogy questions and reports accuracy."""

    # How many questions we get right at [email protected]
    correct = 0

    total = self._analogy_questions.shape[0]
    start = 0
    while start < total:
      limit = start + 2500
      sub = self._analogy_questions[start:limit, :]
      idx = self._predict(sub)
      start = limit
      for question in xrange(sub.shape[0]):
        for j in xrange(4):
          if idx[question, j] == sub[question, 3]:
            # Bingo! We predicted correctly. E.g., [italy, rome, france, paris].
            correct += 1
            break
          elif idx[question, j] in sub[question, :3]:
            # We need to skip words already in the question.
            continue
          else:
            # The correct label is not the [email protected]
            break
    print()
    print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
                                              correct * 100.0 / total))
开发者ID:hal2001,项目名称:tensorflow,代码行数:28,代码来源:word2vec_optimized.py

示例6: show_topics

    def show_topics(self, topics=10, topn=10, log=False, formatted=True):
        shown = []
        if topics < 0:
            topics = len(self.data)

        topics = min(topics, len(self.data))

        for k in xrange(topics):
            lambdak = list(self.data[k, :])
            lambdak = lambdak / sum(lambdak)

            temp = zip(lambdak, xrange(len(lambdak)))
            temp = sorted(temp, key=lambda x: x[0], reverse=True)

            topic_terms = self.show_topic_terms(temp, topn)

            if formatted:
                topic = self.format_topic(k, topic_terms)

                # assuming we only output formatted topics
                if log:
                    logger.info(topic)
            else:
                topic = (k, topic_terms)
            shown.append(topic)

        return shown
开发者ID:Autodidact24,项目名称:gensim,代码行数:27,代码来源:hdpmodel.py

示例7: testParallelDequeueUpToRandomPartition

  def testParallelDequeueUpToRandomPartition(self):
    with self.test_session() as sess:
      dequeue_sizes = [random.randint(50, 150) for _ in xrange(10)]
      total_elements = sum(dequeue_sizes)
      q = tf.RandomShuffleQueue(total_elements, 0, tf.float32, shapes=())

      elems = [10.0 * x for x in xrange(total_elements)]
      enqueue_op = q.enqueue_many((elems,))
      dequeue_ops = [q.dequeue_up_to(size) for size in dequeue_sizes]

      enqueue_op.run()

      # Dequeue random number of items in parallel on 10 threads.
      dequeued_elems = []

      def dequeue(dequeue_op):
        dequeued_elems.extend(sess.run(dequeue_op))
      threads = []
      for dequeue_op in dequeue_ops:
        threads.append(self.checkedThread(target=dequeue, args=(dequeue_op,)))
      for thread in threads:
        thread.start()
      for thread in threads:
        thread.join()
      self.assertItemsEqual(elems, dequeued_elems)
开发者ID:BloodD,项目名称:tensorflow,代码行数:25,代码来源:random_shuffle_queue_test.py

示例8: xfun

def xfun(n, d=None):
    """ Create a QTT-representation of 0:prod(n) _vector
        call examples:
        tt.xfun(2, 5)         # create 2 x 2 x 2 x 2 x 2 TT-vector
        tt.xfun(3)            # create [0, 1, 2] one-dimensional TT-vector
        tt.xfun([3, 5, 7], 2) # create 3 x 5 x 7 x 3 x 5 x 7 TT-vector
    """
    if isinstance(n, six.integer_types):
        n = [n]
    if d is None:
        n0 = _np.asanyarray(n, dtype=_np.int32)
    else:
        n0 = _np.array(n * d, dtype=_np.int32)
    d = n0.size
    if d == 1:
        return _vector.vector.from_list(
            [_np.reshape(_np.arange(n0[0]), (1, n0[0], 1))])
    cr = []
    cur_core = _np.ones((1, n0[0], 2))
    cur_core[0, :, 0] = _np.arange(n0[0])
    cr.append(cur_core)
    ni = float(n0[0])
    for i in xrange(1, d - 1):
        cur_core = _np.zeros((2, n0[i], 2))
        for j in xrange(n0[i]):
            cur_core[:, j, :] = _np.eye(2)
        cur_core[1, :, 0] = ni * _np.arange(n0[i])
        ni *= n0[i]
        cr.append(cur_core)
    cur_core = _np.ones((2, n0[d - 1], 1))
    cur_core[1, :, 0] = ni * _np.arange(n0[d - 1])
    cr.append(cur_core)
    return _vector.vector.from_list(cr)
开发者ID:oseledets,项目名称:ttpy,代码行数:33,代码来源:tools.py

示例9: delta

def delta(n, d=None, center=0):
    """ Create TT-vector for delta-function :math:`\\delta(x - x_0)`. """
    if isinstance(n, six.integer_types):
        n = [n]
    if d is None:
        n0 = _np.asanyarray(n, dtype=_np.int32)
    else:
        n0 = _np.array(n * d, dtype=_np.int32)
    d = n0.size

    if center < 0:
        cind = [0] * d
    else:
        cind = []
        for i in xrange(d):
            cind.append(center % n0[i])
            center //= n0[i]
        if center > 0:
            cind = [0] * d
    cr = []
    for i in xrange(d):
        cur_core = _np.zeros((1, n0[i], 1))
        cur_core[0, cind[i], 0] = 1
        cr.append(cur_core)
    return _vector.vector.from_list(cr)
开发者ID:oseledets,项目名称:ttpy,代码行数:25,代码来源:tools.py

示例10: test_neville2d

    def test_neville2d(self):
        funcx = numpy.sin
        funcy = numpy.exp
        nrow = 10
        ncol = 10
        tol = 1.0e-4
        # TODO: As with test_neville; can this not be simplified with
        # vectorized code
        x = numpy.zeros((nrow, ))
        y = numpy.zeros((ncol, ))
        fval = numpy.empty((nrow, ncol))
        row_tmp = numpy.pi / nrow
        # col_tmp = 1.0 / float(ncol)
        for row in xrange(nrow):
            x[row] = (row + 1.0) * row_tmp
            for col in xrange(ncol):
                y[col] = (col + 1.0) / float(ncol)
                fval[row][col] = funcx(x[row]) * funcy(y[col])

        for row in xrange(ncol):
            xx = (-0.1 + (row + 1.0) / float(nrow)) * numpy.pi
            for col in xrange(4):
                yy = -0.1 + (col + 1.0) / float(ncol)
                answer = funcx(xx) * funcy(yy)
                val = utils.neville2d(xx, yy, x, y, fval)
                self.assertTrue(utils.Knuth_close(answer, val, tol))
开发者ID:mirca,项目名称:sherpa,代码行数:26,代码来源:test_utils.py

示例11: filter

    def filter(self, im):
        falloff = self.falloff
        extent = self.extent

        def length(start, end):
            start_x, start_y = start
            end_x, end_y = end
            dist_x = end_x - start_x
            dist_y = end_y - start_y
            return math.sqrt((dist_x ** 2) + (dist_y ** 2))

        def light_falloff(radius, outside):
            return ((radius / outside) ** falloff) * extent

        im = im.convert('RGBA')

        w, h = im.size
        center = w / 2, h / 2
        outside = length(center, (0, 0))

        data = []
        for y in xrange(h):
            for x in xrange(w):
                radius = length(center, (x, y))
                factor = light_falloff(radius, outside)
                data.append(factor)

        alpha_im = Image.new('L', im.size)
        alpha_im.putdata(data)
        overlay_im = Image.new('L', im.size, 'black')
        return Image.composite(overlay_im, im, alpha_im)
开发者ID:cartlogic,项目名称:pyramid_frontend,代码行数:31,代码来源:filters.py

示例12: SoftmaxEval

  def SoftmaxEval(self, sess, model, num_steps):
    """Evaluate a model in softmax mode.

    Adds char, word recall and sequence error rate events to the sw summary
    writer, and returns them as well
    TODO(rays) Add LogisticEval.
    Args:
      sess:  A tensor flow Session.
      model: The model to run in the session. Requires a VGSLImageModel or any
        other class that has a using_ctc attribute and a RunAStep(sess) method
        that reurns a softmax result with corresponding labels.
      num_steps: Number of steps to evaluate for.
    Returns:
      ErrorRates named tuple.
    Raises:
      ValueError: If an unsupported number of dimensions is used.
    """
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    # Run the requested number of evaluation steps, gathering the outputs of the
    # softmax and the true labels of the evaluation examples.
    total_label_counts = ec.ErrorCounts(0, 0, 0, 0)
    total_word_counts = ec.ErrorCounts(0, 0, 0, 0)
    sequence_errors = 0
    for _ in xrange(num_steps):
      softmax_result, labels = model.RunAStep(sess)
      # Collapse softmax to same shape as labels.
      predictions = softmax_result.argmax(axis=-1)
      # Exclude batch from num_dims.
      num_dims = len(predictions.shape) - 1
      batch_size = predictions.shape[0]
      null_label = softmax_result.shape[-1] - 1
      for b in xrange(batch_size):
        if num_dims == 2:
          # TODO(rays) Support 2-d data.
          raise ValueError('2-d label data not supported yet!')
        else:
          if num_dims == 1:
            pred_batch = predictions[b, :]
            labels_batch = labels[b, :]
          else:
            pred_batch = [predictions[b]]
            labels_batch = [labels[b]]
          text = self.StringFromCTC(pred_batch, model.using_ctc, null_label)
          truth = self.StringFromCTC(labels_batch, False, null_label)
          # Note that recall_errs is false negatives (fn) aka drops/deletions.
          # Actual recall would be 1-fn/truth_words.
          # Likewise precision_errs is false positives (fp) aka adds/insertions.
          # Actual precision would be 1-fp/ocr_words.
          total_word_counts = ec.AddErrors(total_word_counts,
                                           ec.CountWordErrors(text, truth))
          total_label_counts = ec.AddErrors(total_label_counts,
                                            ec.CountErrors(text, truth))
          if text != truth:
            sequence_errors += 1

    coord.request_stop()
    coord.join(threads)
    return ec.ComputeErrorRates(total_label_counts, total_word_counts,
                                sequence_errors, num_steps * batch_size)
开发者ID:ALISCIFP,项目名称:models,代码行数:60,代码来源:decoder.py

示例13: testParams

  def testParams(self):
    """Tests that the params work as intended."""
    num_classes = 2
    with self.test_session() as sess:
      # Experiment 1. Update weights only.
      data = constant_op.constant(self.data, dtype=dtypes.float32)
      gmm_tool = gmm_ops.GmmAlgorithm([data], num_classes,
                                      [[3.0, 3.0], [0.0, 0.0]], 'w')
      training_ops = gmm_tool.training_ops()
      variables.global_variables_initializer().run()
      sess.run(gmm_tool.init_ops())
      for _ in xrange(self.iterations):
        sess.run(training_ops)

      # Only the probability to each class is updated.
      alphas = sess.run(gmm_tool.alphas())
      self.assertGreater(alphas[1], 0.6)
      means = sess.run(gmm_tool.clusters())
      np.testing.assert_almost_equal(
          np.expand_dims([[3.0, 3.0], [0.0, 0.0]], 1), means)
      covs = sess.run(gmm_tool.covariances())
      np.testing.assert_almost_equal(covs[0], covs[1])

      # Experiment 2. Update means and covariances.
      gmm_tool = gmm_ops.GmmAlgorithm([data], num_classes,
                                      [[3.0, 3.0], [0.0, 0.0]], 'mc')
      training_ops = gmm_tool.training_ops()
      variables.global_variables_initializer().run()
      sess.run(gmm_tool.init_ops())
      for _ in xrange(self.iterations):
        sess.run(training_ops)
      alphas = sess.run(gmm_tool.alphas())
      self.assertAlmostEqual(alphas[0], alphas[1])
      means = sess.run(gmm_tool.clusters())
      np.testing.assert_almost_equal(
          np.expand_dims([[2.0, 2.0], [-1.0, -1.0]], 1), means, decimal=1)
      covs = sess.run(gmm_tool.covariances())
      np.testing.assert_almost_equal(
          [[0.371111, -0.0050774], [-0.0050774, 0.8651744]], covs[0], decimal=4)
      np.testing.assert_almost_equal(
          [[0.146976, 0.0259463], [0.0259463, 0.2543971]], covs[1], decimal=4)

      # Experiment 3. Update covariances only.
      gmm_tool = gmm_ops.GmmAlgorithm([data], num_classes,
                                      [[-1.0, -1.0], [1.0, 1.0]], 'c')
      training_ops = gmm_tool.training_ops()
      variables.global_variables_initializer().run()
      sess.run(gmm_tool.init_ops())
      for _ in xrange(self.iterations):
        sess.run(training_ops)
      alphas = sess.run(gmm_tool.alphas())
      self.assertAlmostEqual(alphas[0], alphas[1])
      means = sess.run(gmm_tool.clusters())
      np.testing.assert_almost_equal(
          np.expand_dims([[-1.0, -1.0], [1.0, 1.0]], 1), means)
      covs = sess.run(gmm_tool.covariances())
      np.testing.assert_almost_equal(
          [[0.1299582, 0.0435872], [0.0435872, 0.2558578]], covs[0], decimal=5)
      np.testing.assert_almost_equal(
          [[3.195385, 2.6989155], [2.6989155, 3.3881593]], covs[1], decimal=5)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:60,代码来源:gmm_ops_test.py

示例14: add_lines

    def add_lines(self, levels, colors, linewidths, erase=True):
        '''
        Draw lines on the colorbar.

        *colors* and *linewidths* must be scalars or
        sequences the same length as *levels*.

        Set *erase* to False to add lines without first
        removing any previously added lines.
        '''
        y = self._locate(levels)
        igood = (y < 1.001) & (y > -0.001)
        y = y[igood]
        if cbook.iterable(colors):
            colors = np.asarray(colors)[igood]
        if cbook.iterable(linewidths):
            linewidths = np.asarray(linewidths)[igood]
        N = len(y)
        x = np.array([0.0, 1.0])
        X, Y = np.meshgrid(x, y)
        if self.orientation == 'vertical':
            xy = [list(zip(X[i], Y[i])) for i in xrange(N)]
        else:
            xy = [list(zip(Y[i], X[i])) for i in xrange(N)]
        col = collections.LineCollection(xy, linewidths=linewidths)

        if erase and self.lines:
            for lc in self.lines:
                lc.remove()
            self.lines = []
        self.lines.append(col)
        col.set_color(colors)
        self.ax.add_collection(col)
        self.stale = True
开发者ID:4over7,项目名称:matplotlib,代码行数:34,代码来源:colorbar.py

示例15: parse_atoms

    def parse_atoms(self, tokens, command, min_size, max_size=None):
        """
        Parses a sequence of N atoms (min_size <= N <= max_size) consuming
        the tokens
        """
        if max_size is None:
            max_size = min_size

        res = []
        current = None
        for _ in xrange(min_size):
            current = next(tokens)
            if current == ")":
                raise SyntaxError("Expected at least %d arguments in %s command." % (min_size, command))
            if current == "(":
                raise SyntaxError("Unexpected token '(' in %s command." % command)
            res.append(current)

        for _ in xrange(min_size, max_size + 1):
            current = next(tokens)
            if current == ")":
                return res
            if current == "(":
                raise SyntaxError("Unexpected token '(' in %s command." % command)
            res.append(current)
        raise SyntaxError(
            "Unexpected token '%s' in %s command. Expected at " "most %d arguments." % (current, command, max_size)
        )
开发者ID:bingcao,项目名称:pysmt,代码行数:28,代码来源:parser.py


注:本文中的six.moves.xrange函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。