本文整理汇总了Python中simplelearn.asserts.assert_all_greater函数的典型用法代码示例。如果您正苦于以下问题:Python assert_all_greater函数的具体用法?Python assert_all_greater怎么用?Python assert_all_greater使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_all_greater函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_conv_classifier
def build_conv_classifier(input_node,
filter_shapes,
filter_counts,
filter_init_uniform_ranges,
pool_shapes,
pool_strides,
affine_output_sizes,
affine_init_stddevs,
dropout_include_rates,
conv_pads,
rng,
theano_rng):
'''
Builds a classification convnet on top of input_node.
Returns
-------
rval: tuple
(conv_nodes, affine_nodes, output_node), where:
conv_nodes is a list of the Conv2d nodes.
affine_nodes is a list of the AffineNodes.
output_node is the final node, a Softmax.
'''
assert_is_instance(input_node, Lcn)
conv_shape_args = (filter_shapes,
pool_shapes,
pool_strides)
for conv_shapes in conv_shape_args:
for conv_shape in conv_shapes:
assert_all_integer(conv_shape)
assert_all_greater(conv_shape, 0)
conv_args = conv_shape_args + (filter_counts, filter_init_uniform_ranges)
assert_all_equal([len(c) for c in conv_args])
assert_equal(len(affine_output_sizes), len(affine_init_stddevs))
assert_equal(len(dropout_include_rates),
len(filter_shapes) + len(affine_output_sizes))
assert_equal(affine_output_sizes[-1], 10) # for MNIST
#assert_equal(input_node.output_format.axes, ('b', '0', '1'))
#
# Done sanity-checking args.
#
input_shape = input_node.output_format.shape
# Converts from MNIST's ('b', '0', '1') to ('b', 'c', '0', '1')
last_node = input_node
conv_dropout_include_rates = \
dropout_include_rates[:len(filter_shapes)]
# Adds a dropout-conv-bias-relu-maxpool stack for each element in
# filter_XXXX
conv_layers = []
def uniform_init(rng, params, init_range):
'''
Fills params with values uniformly sampled from
[-init_range, init_range]
'''
assert_floating(init_range)
assert_greater_equal(init_range, 0)
values = params.get_value()
values[...] = rng.uniform(low=-init_range,
high=init_range,
size=values.shape)
params.set_value(values)
for (filter_shape,
filter_count,
filter_init_range,
pool_shape,
pool_stride,
conv_dropout_include_rate,
conv_pads) in safe_izip(filter_shapes,
filter_counts,
filter_init_uniform_ranges,
pool_shapes,
pool_strides,
conv_dropout_include_rates,
conv_pads):
if conv_dropout_include_rate != 1.0:
last_node = Dropout(last_node,
conv_dropout_include_rate,
theano_rng)
last_node = Conv2dLayer(last_node,
filter_shape,
filter_count,
#.........这里部分代码省略.........
示例2: build_fc_classifier
def build_fc_classifier(input_node, sizes, sparse_init_counts, dropout_include_probabilities, rng, theano_rng):
"""
Builds a stack of fully-connected layers followed by a Softmax.
Each hidden layer will be preceded by a ReLU.
Initialization:
Weights are initialized in the same way as in Pylearn2's MLP tutorial:
pylearn2/scripts/tutorials/multilayer_perceptron/mlp_tutorial_part_3.yaml
This means the following:
Of the N affine layers, the weights of the first N-1 are to all 0.0, except
for k randomly-chosen elements, which are set to some random number drawn
from the normal distribution with stddev=1.0.
The biases are all initialized to 0.0.
The last layer's weights and biases are both set to 0.0.
Parameters
----------
input_node: Node
The node to build the stack on.
sizes: Sequence
A sequence of ints, indicating the output sizes of each layer.
The last int is the number of classes.
sparse_init_counts:
A sequence of N-1 ints, where N = len(sizes).
Used to initialize the weights of the first N-1 layers.
If the n'th element is x, this means that the n'th layer
will have x nonzeros, with the rest initialized to zeros.
dropout_include_probabilities: Sequence
A Sequence of N-1 floats, where N := len(sizes)
The dropout include probabilities for the outputs of each of the layers,
except for the final one.
If any of these probabilities is 1.0, the corresponding Dropout node
will be omitted.
rng: numpy.random.RandomState
The RandomState to draw initial weights from.
theano_rng: theano.tensor.shared_randomstreams.RandomStreams
The RandomStreams to draw dropout masks from.
Returns
-------
rval: tuple
(affine_nodes, output_node), where affine_nodes is a list of the
AffineNodes, in order, and output_node is the final node, a Softmax.
"""
assert_is_instance(input_node, Node)
# pylint: disable=no-member
assert_equal(input_node.output_format.dtype, numpy.dtype(theano.config.floatX))
assert_greater(len(sizes), 0)
assert_all_greater(sizes, 0)
assert_equal(len(sparse_init_counts), len(sizes) - 1)
assert_all_integer(sparse_init_counts)
assert_all_greater(sparse_init_counts, 0)
assert_all_less_equal(sparse_init_counts, sizes[:-1])
assert_equal(len(dropout_include_probabilities), len(sizes))
affine_nodes = []
last_node = input_node
for layer_index, layer_output_size in enumerate(sizes):
# Add dropout, if asked for
include_probability = dropout_include_probabilities[layer_index]
if include_probability != 1.0:
last_node = Dropout(last_node, include_probability, theano_rng)
output_format = DenseFormat(axes=("b", "f"), shape=(-1, layer_output_size), dtype=None)
if layer_index < (len(sizes) - 1):
last_node = AffineLayer(last_node, output_format)
else:
last_node = SoftmaxLayer(last_node, output_format)
affine_nodes.append(last_node.affine_node)
# Not used in this demo, but keeping it in in case we want to start using
# it again.
def init_sparse_bias(shared_variable, num_nonzeros, rng):
"""
Mimics the sparse initialization in
pylearn2.models.mlp.Linear.set_input_space()
"""
params = shared_variable.get_value()
assert_equal(params.shape[0], 1)
assert_greater_equal(num_nonzeros, 0)
#.........这里部分代码省略.........
示例3: build_conv_classifier
def build_conv_classifier(input_node,
filter_shapes,
filter_counts,
filter_init_uniform_ranges,
pool_shapes,
pool_strides,
affine_output_sizes,
affine_init_stddevs,
dropout_include_rates,
conv_pads,
rng,
theano_rng):
'''
Builds a classification convnet on top of input_node.
Returns
-------
rval: tuple
(conv_nodes, affine_nodes, output_node), where:
conv_nodes is a list of the Conv2d nodes.
affine_nodes is a list of the AffineNodes.
output_node is the final node, a Softmax.
'''
assert_is_instance(input_node, Lcn)
conv_shape_args = (filter_shapes,
pool_shapes,
pool_strides)
for conv_shapes in conv_shape_args:
for conv_shape in conv_shapes:
assert_all_integer(conv_shape)
assert_all_greater(conv_shape, 0)
conv_args = conv_shape_args + (filter_counts, filter_init_uniform_ranges)
assert_all_equal([len(c) for c in conv_args])
assert_equal(len(affine_output_sizes), len(affine_init_stddevs))
assert_equal(len(dropout_include_rates),
len(filter_shapes) + len(affine_output_sizes))
assert_equal(affine_output_sizes[-1], 10) # for MNIST
#assert_equal(input_node.output_format.axes, ('b', '0', '1'))
#
# Done sanity-checking args.
#
input_shape = input_node.output_format.shape
# Converts from MNIST's ('b', '0', '1') to ('b', 'c', '0', '1')
last_node = input_node
conv_dropout_include_rates = \
dropout_include_rates[:len(filter_shapes)]
# Adds a dropout-conv-bias-relu-maxpool stack for each element in
# filter_XXXX
conv_layers = []
def uniform_init(rng, params, init_range):
'''
Fills params with values uniformly sampled from
[-init_range, init_range]
'''
assert_floating(init_range)
assert_greater_equal(init_range, 0)
values = params.get_value()
values[...] = rng.uniform(low=-init_range,
high=init_range,
size=values.shape)
params.set_value(values)
for (filter_shape,
filter_count,
filter_init_range,
pool_shape,
pool_stride,
conv_dropout_include_rate,
conv_pad) in safe_izip(filter_shapes,
filter_counts,
filter_init_uniform_ranges,
pool_shapes,
pool_strides,
conv_dropout_include_rates,
conv_pads):
if conv_dropout_include_rate != 1.0:
last_node = Dropout(last_node,
conv_dropout_include_rate,
theano_rng)
last_node = Conv2dLayer(last_node,
filter_shape,
filter_count,
#.........这里部分代码省略.........
示例4: build_fc_classifier
def build_fc_classifier(input_node,
sizes,
sparse_init_counts,
dropout_include_probabilities,
rng,
theano_rng):
'''
Builds a stack of fully-connected layers followed by a Softmax.
Each hidden layer will be preceded by a ReLU.
Initialization:
Weights are initialized in the same way as in Pylearn2's MLP tutorial:
pylearn2/scripts/tutorials/multilayer_perceptron/mlp_tutorial_part_3.yaml
This means the following:
Of the N affine layers, the weights of the first N-1 are to all 0.0, except
for k randomly-chosen elements, which are set to some random number drawn
from the normal distribution with stddev=1.0.
The biases are all initialized to 0.0.
The last layer's weights and biases are both set to 0.0.
Parameters
----------
input_node: Node
The node to build the stack on.
sizes: Sequence
A sequence of ints, indicating the output sizes of each layer.
The last int is the number of classes.
sparse_init_counts:
A sequence of N-1 ints, where N = len(sizes).
Used to initialize the weights of the first N-1 layers.
If the n'th element is x, this means that the n'th layer
will have x nonzeros, with the rest initialized to zeros.
dropout_include_probabilities: Sequence
A Sequence of N-1 floats, where N := len(sizes)
The dropout include probabilities for the outputs of each of the layers,
except for the final one.
If any of these probabilities is 1.0, the corresponding Dropout node
will be omitted.
rng: numpy.random.RandomState
The RandomState to draw initial weights from.
theano_rng: theano.tensor.shared_randomstreams.RandomStreams
The RandomStreams to draw dropout masks from.
Returns
-------
rval: tuple
(affine_nodes, output_node), where affine_nodes is a list of the
AffineNodes, in order, and output_node is the final node, a Softmax.
'''
assert_is_instance(input_node, Node)
# pylint: disable=no-member
assert_equal(input_node.output_format.dtype,
numpy.dtype(theano.config.floatX))
assert_greater(len(sizes), 0)
assert_all_greater(sizes, 0)
assert_equal(len(sparse_init_counts), len(sizes) - 1)
assert_all_integer(sparse_init_counts)
assert_all_greater(sparse_init_counts, 0)
assert_all_less_equal(sparse_init_counts, sizes[:-1])
assert_equal(len(dropout_include_probabilities), len(sizes))
'''
affine_nodes = []
last_node = input_node
for layer_index, layer_output_size in enumerate(sizes):
# Add dropout, if asked for
include_probability = dropout_include_probabilities[layer_index]
if include_probability != 1.0:
last_node = Dropout(last_node, include_probability, theano_rng)
output_format = DenseFormat(axes=('b', 'f'),
shape=(-1, layer_output_size),
dtype=None)
if layer_index < (len(sizes) - 1):
last_node = AffineLayer(last_node, output_format)
else:
last_node = SoftmaxLayer(last_node, output_format)
affine_nodes.append(last_node.affine_node)
# Not used in this demo, but keeping it in in case we want to start using
# it again.
#.........这里部分代码省略.........
示例5: build_fc_classifier
def build_fc_classifier(input_node,
sizes,
sparse_init_counts,
dropout_include_probabilities,
rng,
theano_rng):
'''
Builds a stack of fully-connected layers followed by a Softmax.
Each hidden layer will be preceded by a ReLU.
Initialization:
Weights are initialized in the same way as in Pylearn2's MLP tutorial:
pylearn2/scripts/tutorials/multilayer_perceptron/mlp_tutorial_part_3.yaml
This means the following:
Of the N affine layers, the weights of the first N-1 are to all 0.0, except
for k randomly-chosen elements, which are set to some random number drawn
from the normal distribution with stddev=1.0.
The biases are all initialized to 0.0.
The last layer's weights and biases are both set to 0.0.
Parameters
----------
input_node: Node
The node to build the stack on.
sizes: Sequence
A sequence of ints, indicating the output sizes of each layer.
The last int is the number of classes.
sparse_init_counts:
A sequence of N-1 ints, where N = len(sizes).
Used to initialize the weights of the first N-1 layers.
If the n'th element is x, this means that the n'th layer
will have x nonzeros, with the rest initialized to zeros.
dropout_include_probabilities: Sequence
A Sequence of N-1 floats, where N := len(sizes)
The dropout include probabilities for the outputs of each of the layers,
except for the final one.
If any of these probabilities is 1.0, the corresponding Dropout node
will be omitted.
rng: numpy.random.RandomState
The RandomState to draw initial weights from.
theano_rng: theano.tensor.shared_randomstreams.RandomStreams
The RandomStreams to draw dropout masks from.
Returns
-------
rval: tuple
(affine_nodes, output_node), where affine_nodes is a list of the
AffineNodes, in order, and output_node is the final node, a Softmax.
'''
assert_is_instance(input_node, Node)
assert_equal(input_node.output_format.dtype,
numpy.dtype(theano.config.floatX))
assert_greater(len(sizes), 0)
assert_all_greater(sizes, 0)
assert_equal(len(sparse_init_counts), len(sizes) - 1)
assert_all_integer(sparse_init_counts)
assert_all_greater(sparse_init_counts, 0)
assert_all_less_equal(sparse_init_counts, sizes[:-1])
assert_equal(len(dropout_include_probabilities), len(sizes))
affine_nodes = []
last_node = input_node
for layer_index, layer_output_size in enumerate(sizes):
# Add dropout, if asked for
include_probability = dropout_include_probabilities[layer_index]
if include_probability != 1.0:
last_node = Dropout(last_node, include_probability, theano_rng)
output_format = DenseFormat(axes=('b', 'f'),
shape=(-1, layer_output_size),
dtype=None)
if layer_index < (len(sizes) - 1):
last_node = AffineLayer(last_node, output_format)
else:
last_node = SoftmaxLayer(last_node, output_format)
affine_nodes.append(last_node.affine_node)
def init_sparse_bias(shared_variable, num_nonzeros, rng):
'''
Mimics the sparse initialization in
pylearn2.models.mlp.Linear.set_input_space()
'''
#.........这里部分代码省略.........
示例6: apply_subwindow_func
def apply_subwindow_func(subwindow_func,
padded_images,
pads,
window_shape,
strides):
'''
Applies a sliding-window function to all subwindows of a feature map.
Parameters
----------
subwindow_func: function
A function that takes a subwindow and returns a scalar.
Input: tensor with shape [BATCH_SIZE, NUM_CHANNELS, ROWS, COLS]
Output: tensor with shape [BATCH_SIZE, NUM_CHANNELS]
padded_images: numpy.ndarray
A feature map with shape [BATCH_SIZE, NUM_CHANNELS, ROWS, COLS].
This has pad[0] rows and pad[1] columns of zero-padding.
max_pad: Sequence
[pad_rows, pad_columns], the # of padded rows and columns on each
side of the image.
'''
assert_equal(padded_images.ndim, 4)
assert_all_greater(padded_images.shape[2:], pads)
_assert_is_shape2d(window_shape)
_assert_is_shape2d(strides)
pads, window_shape, strides = (numpy.asarray(a) for a in (pads,
window_shape,
strides))
assert_all_greater(numpy.asarray(padded_images.shape[2:]), 2 * pads)
# Check that pad region is full of the same value
if pads[0] > 0:
pad_value = padded_images[0, 0, 0, 0]
assert_true(numpy.all(padded_images[:, :, :pads[0], :] ==
pad_value))
assert_true(numpy.all(padded_images[:, :, -pads[0]:, :] ==
pad_value))
if pads[1] > 0:
pad_value = padded_images[0, 0, 0, 0]
assert_true(numpy.all(padded_images[:, :, :, :pads[1]] ==
pad_value))
assert_true(numpy.all(padded_images[:, :, :, -pads[1]:] ==
pad_value))
rows, cols = (range(0,
padded_images.shape[i + 2] - window_shape[i] + 1,
strides[i])
for i in (0, 1))
output_image = None
for out_r, in_r in enumerate(rows):
for out_c, in_c in enumerate(cols):
subwindow = padded_images[:,
:,
in_r:(in_r + window_shape[0]),
in_c:(in_c + window_shape[1])]
output = subwindow_func(subwindow)
assert_equal(output.ndim, 2)
# check that subwindow_func preserved the batch size
assert_equal(output.shape[0], padded_images.shape[0])
assert_greater(output.shape[1], 0)
if output_image is None:
output_image = numpy.zeros((output.shape[0],
output.shape[1],
len(rows),
len(cols)),
dtype=output.dtype)
output_image[:, :, out_r, out_c] = output
return output_image
示例7: _sliding_window_2d_testimpl
def _sliding_window_2d_testimpl(expected_subwindow_funcs,
pad_values,
make_node_funcs,
make_pad_args_funcs,
rtol=None):
'''
Implementation of tests for 2D sliding-window nodes like Pool2D and Conv2d.
Parameters
----------
expected_subwindow_funcs: Sequence
A Sequence of subwindow functions.
These take a subwindow and return a scalar.
Input: tensor with shape [BATCH_SIZE, NUM_CHANNELS, ROWS, COLS]
Output: tensor with shape [BATCH_SIZE, NUM_CHANNELS]
pad_values: Sequence
A sequence of pad filler values to use for eah of the
expected_subwindow_funcs. For example, if expected_subwindow_funcs
is [average_pool, max_pool], use [0.0, -numpy.inf].
make_node_funcs: Sequence
A Sequence of functions that create sliding-window Nodes to be tested
against the ground-truth provided by the corresponding
expected_subwindow_funcs. Its paramters are as follows:
Parameters
----------
input_node: Node
window_shape: Sequence
[NUM_ROWS, NUM_COLUMNS] of the sliding window.
strides: Sequence
[ROW_STRIDE, COLUMN_STRIDE], or how many rows/columns to skip between
applications of the sliding window.
pad: Sequence
[ROW_PAD, COLUMN_PAD], or # of zero-padding rows/columns to add to each
side of the image.
axis_map: dict
Maps strings to strings. Optional.
If the node uses different axis names than 'b', 'c', '0', '1', this
specifies the mapping from the node's axis names to 'b', 'c', '0', '1'.
make_pad_args_funcs: Sequence
A Sequence of functions that take a window_shape arg (2d array) and
returns an Iterable of 'pad' arguments, which can be strings or 2d arrays
of ints.
'''
assert_is_instance(expected_subwindow_funcs, Sequence)
assert_is_instance(pad_values, Sequence)
assert_is_instance(make_node_funcs, Sequence)
# TODO: change this to construct a Toeplitz matrix out of padded_images,
# so we get a giant stack of C X WR X WC matrices, which can then be fed
# to subwindow_func as a single batch.
# See scipy.linalg.toeplitz
def apply_subwindow_func(subwindow_func,
padded_images,
pads,
window_shape,
strides):
'''
Applies a sliding-window function to all subwindows of a feature map.
Parameters
----------
subwindow_func: function
A function that takes a subwindow and returns a scalar.
Input: tensor with shape [BATCH_SIZE, NUM_CHANNELS, ROWS, COLS]
Output: tensor with shape [BATCH_SIZE, NUM_CHANNELS]
padded_images: numpy.ndarray
A feature map with shape [BATCH_SIZE, NUM_CHANNELS, ROWS, COLS].
This has pad[0] rows and pad[1] columns of zero-padding.
max_pad: Sequence
[pad_rows, pad_columns], the # of padded rows and columns on each
side of the image.
'''
assert_equal(padded_images.ndim, 4)
assert_all_greater(padded_images.shape[2:], pads)
_assert_is_shape2d(window_shape)
_assert_is_shape2d(strides)
pads, window_shape, strides = (numpy.asarray(a) for a in (pads,
window_shape,
strides))
assert_all_greater(numpy.asarray(padded_images.shape[2:]), 2 * pads)
# Check that pad region is full of the same value
if pads[0] > 0:
pad_value = padded_images[0, 0, 0, 0]
assert_true(numpy.all(padded_images[:, :, :pads[0], :] ==
pad_value))
assert_true(numpy.all(padded_images[:, :, -pads[0]:, :] ==
pad_value))
#.........这里部分代码省略.........