当前位置: 首页>>代码示例>>Python>>正文


Python sift.process_image函数代码示例

本文整理汇总了Python中sift.process_image函数的典型用法代码示例。如果您正苦于以下问题:Python process_image函数的具体用法?Python process_image怎么用?Python process_image使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了process_image函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: sift_pan_desc_generator

def sift_pan_desc_generator(path='/home/aurora/hdd/workspace/PycharmProjects/data/N20040103G/'):
    filelists = getFiles(path)
    feature = []
    for index, file in enumerate(filelists):
        sift.process_image(file, 'pan'+str(index)+'.sift')
        feature.append('pan'+str(index)+'.sift')
    return feature
开发者ID:auroua,项目名称:aurora_detection,代码行数:7,代码来源:sift_test.py

示例2: cbir_train

def cbir_train(train_path, voc_name, db_name, n_subsample=2000, n_cluster=2000, subfeatsampling=10):
    voc_name = voc_name + '_' + str(n_subsample) + '_' + str(n_cluster) + '_' + str(subfeatsampling)
    db_name = db_name[:-3] + '_' + str(n_subsample) + '_' + str(n_cluster) + '_' + str(subfeatsampling) + db_name[-3:]

    imlist, featlist = cbir_utils.create_imglist_featlist(train_path)
    imlist = imlist[:n_subsample]
    featlist = featlist[:n_subsample]

    ### generate sift feature
    nbr_images = len(imlist)
    ''''''
    for i in range(nbr_images):
        sift.process_image(imlist[i], featlist[i], mask = True)

    ### generate visual word
    voc = visual_word.Vocabulary(voc_name)
    voc.train(featlist, n_cluster, subfeatsampling)
    with open(voc_name+'.pkl', 'wb') as f:
        cPickle.dump(voc, f)
    print 'vocabulary is', voc.name, voc.nbr_word

    ### generate image index
    with open(voc_name+'.pkl', 'rb') as f:
        voc = cPickle.load(f)

    indx = image_search.Indexer(db_name, voc)
    indx.create_tables()

    for i in range(nbr_images):
        locs, descr = sift.read_features_from_file(featlist[i])
        indx.add_to_index(imlist[i], descr)

    indx.db_commit()
    print 'generate index finish!'
    print 'training over'
开发者ID:yangxian10,项目名称:CBIR_py,代码行数:35,代码来源:cbir_demo.py

示例3: sift_aurora_desc_generator

def sift_aurora_desc_generator(path, des):
    filelists = getFiles(path)
    feature = []
    for index, file in enumerate(filelists):
        sift.process_image(file, des+str(index)+'.sift')
        feature.append(des+str(index)+'.sift')
    return feature
开发者ID:auroua,项目名称:aurora_detection,代码行数:7,代码来源:aurora_sift_graph.py

示例4: extract_sift_feature

def extract_sift_feature(fname):
	fn, fext = os.path.splitext(os.path.basename(fname))
	if not os.path.exists(TMP_DIR + fn + '.key'):
		im = Image.open(fname)
		im_l = im.convert('L')
		im_l.save(TMP_DIR + fn + '.pgm', 'PPM')
		sift.process_image(TMP_DIR + fn + '.pgm', TMP_DIR + fn + '.key')
		os.remove(TMP_DIR + fn + '.pgm')
开发者ID:zlike,项目名称:affivir,代码行数:8,代码来源:sift_runner.py

示例5: plot_sift_feature

def plot_sift_feature(im):
    #imname = ’empire.jpg’
    #im1 = array(Image.open(imname).convert(’L’))
    tmpFile = 'tmp.sift'
    sift.process_image(im,tmpFile)
    l1,d1 = sift.read_features_from_file(tmpFile)
    figure()
    gray()
    sift.plot_features(im,l1,circle=True)
    show()
开发者ID:tianwalker2012,项目名称:handpa,代码行数:10,代码来源:image_play.py

示例6: get_krt

def get_krt(im1, im2):
    ims = [im1, im2]
    sifts = []
    for x in range(2):
        sifts.append(ims[x][:-3]+"sift")

    # compute features                                                        
    #sift.process_image('../../data/book_frontal.JPG','../../data/im0.sift')
    sift.process_image(ims[0],sifts[0])

    l0,d0 = sift.read_features_from_file(sifts[0])
    #sift.process_image('../../data/book_perspective.JPG','../../data/im1.sift')
    sift.process_image(ims[1],sifts[1])
    l1,d1 = sift.read_features_from_file(sifts[1])
    # match features and estimate homography                                        
    matches = sift.match_twosided(d0,d1)
    ndx = matches.nonzero()[0]
    fp = homography.make_homog(l0[ndx,:2].T)
    ndx2 = [int(matches[i]) for i in ndx]
    print len(ndx2)
    tp = homography.make_homog(l1[ndx2,:2].T)
    model = homography.RansacModel()
    H,ransac_data = homography.H_from_ransac(fp,tp,model)


    # camera calibration
    #K = camera.my_calibration((747,1000))
    K = camera.my_calibration((Image.open(im2).size))
    # 3D points at plane z=0 with sides of length 0.2
    box = cube.cube_points([0,0,0.1],0.1)
    # project bottom square in first image
    cam1 = camera.Camera( hstack((K,dot(K,array([[0],[0],[-1]])) )) )
    # first points are the bottom square
    box_cam1 = cam1.project(homography.make_homog(box[:,:5]))
    # use H to transfer points to the second image
    print dot(H,box_cam1)
    box_trans = homography.normalize(dot(H,box_cam1))
    # compute second camera matrix from cam1 and H
    cam2 = camera.Camera(dot(H,cam1.P))
    A = dot(linalg.inv(K),cam2.P[:,:3])
    A = array([A[:,0],A[:,1],cross(A[:,0],A[:,1])]).T
    cam2.P[:,:3] = dot(K,A)
    # project with the second camera
    box_cam2 = cam2.project(homography.make_homog(box))
    # test: projecting point on z=0 should give the same
    point = array([1,1,0,1]).T
    print homography.normalize(dot(dot(H,cam1.P),point))
    print cam2.project(point)

    import pickle
    with open('%s.pkl' % ims[1][:-4],'w') as f:
        pickle.dump(K,f)
        pickle.dump(dot(linalg.inv(K),cam2.P),f)
    sys.stderr.write("K and Rt dumped to %s.pkl\n" % ims[1][:-4])
开发者ID:ak352,项目名称:pycv,代码行数:54,代码来源:test_cube.py

示例7: get_sift_lowe

def get_sift_lowe(img):
    features_fname = img + '.sift'
    if os.path.isfile(features_fname) == False:
        is_size_zero = sift.process_image(img, features_fname)
        if is_size_zero:
            os.remove(features_fname)
            sift.process_image(img, features_fname)
    if os.path.isfile(features_fname) and os.path.getsize(features_fname) == 0:
        os.remove(features_fname)
        sift.process_image(img, features_fname)
    locs, desc = sift.read_features_from_file(features_fname)
    return desc
开发者ID:afshaanmaz,项目名称:FoodClassifier,代码行数:12,代码来源:utils.py

示例8: extractSift

def extractSift(input_files):
    all_features_dict = {}
    for i, fname in enumerate(input_files):
        features_fname = fname + '.sift'
        if exists(features_fname) == False:
            print "calculating sift features for", fname
            sift.process_image(fname, features_fname)
        print "gathering sift features for", fname,
        locs, descriptors = sift.read_features_from_file(features_fname)
        print descriptors.shape
        all_features_dict[fname] = descriptors
    return all_features_dict
开发者ID:navinpai,项目名称:CS706,代码行数:12,代码来源:learn.py

示例9: extractSift

def extractSift(input_files,target_folder):
	all_features_dict = {}
	count=0
	for i,fname in enumerate(input_files):
		features_fname = target_folder+'/'+fname.split('/')[2].split('.')[0]+'.sift'
		if exists(features_fname) == False:
			print("Calculating sift features for ",fname)
			sift.process_image(fname, features_fname,count)
			count+=1
		locs, descriptors = sift.read_features_from_file(features_fname)
		all_features_dict[fname] = (locs,descriptors)
	os.chdir('..')
	return all_features_dict
开发者ID:parulsethi,项目名称:espier,代码行数:13,代码来源:vector_quantize.py

示例10: find_matches

def find_matches(image_names, root):
    l = {}
    d = {}
    n = len(image_names)
    for i, im in enumerate(image_names):
        resultname = os.path.join(root, '{}.sift'.format(im))
        if not os.path.isfile(resultname):
            sift.process_image(os.path.join(root, '{}.png'.format(im)), resultname)
        l[i], d[i] = sift.read_features_from_file(resultname)

    matches = {}
    for i in range(n - 1):
        matches[i] = sift.match(d[i + 1], d[i])
    return matches, l, d
开发者ID:softtrainee,项目名称:arlab,代码行数:14,代码来源:stitch.py

示例11: extractSift

def extractSift(input_files):
	all_features_dict = {}
	count = 0
	for i,fname in enumerate(input_files):
		# path to store resulting sift files
		features_fname = 'sift_output/'+fname.split('/')[2].split('.')[0]+'.sift'
		if count == 0:
			os.chdir('siftDemoV4')
		print("Calculating sift features for ",fname)
		sift.process_image(fname,features_fname,count)
		count+=1
		locs, descriptors = sift.read_features_from_file(features_fname)
		all_features_dict[fname] = descriptors
	os.chdir('..')
	return all_features_dict
开发者ID:parulsethi,项目名称:espier,代码行数:15,代码来源:visual_words.py

示例12: extractSift

def extractSift(input_files):
  print "extracting Sift features"
  all_features_dict = {}
  for i, fname in enumerate(input_files):
    rest_of_path = fname[:-(len(os.path.basename(fname)))]
    rest_of_path = os.path.join(rest_of_path, "sift")
    rest_of_path = os.path.join(rest_of_path, os.path.basename(fname))
    features_fname = rest_of_path + '.sift'
    if os.path.exists(features_fname) == False:
      # print "calculating sift features for", fname
      sift.process_image(fname, features_fname)
    # print "gathering sift features for", fname,
    locs, descriptors = sift.read_features_from_file(features_fname)
    # print descriptors.shape
    all_features_dict[fname] = descriptors
  return all_features_dict
开发者ID:ioanachelu,项目名称:bag-of-visual-words,代码行数:16,代码来源:utils.py

示例13: extractMF

def extractMF(filename):
    features_fname = filename + '.sift'
    sift.process_image(filename, features_fname)
    locs, descriptors = sift.read_features_from_file(features_fname)
    sh = min(locs.shape[0], 1000)
    res = np.zeros((sh,SIZE_LOCAL_FEATURE)).astype(np.float32)
    extra = [20,False,True,False,0,0,0]
    WIN = 5
    for i in range(sh):
        x = np.int32(round(locs[i][0]))
        y = np.int32(round(locs[i][1]))
        I = Image.open(filename)
        Nx,Ny = I.size
        a = sg.spec(I.crop((max(x-WIN,0),max(y-WIN,0),min(x+WIN,Nx-1),min(y+WIN,Ny-1))),extra)
        res[i] = a
    print res.shape
    return res
开发者ID:rbaravalle,项目名称:europeanfood,代码行数:17,代码来源:classifierBrod.py

示例14: len

def __main__:
	
	nbr_images = len(imlist)
	featlist = [ imlist[i][:-3] + 'sif' for i in range(nbr_images))

	for i in range(nbr_images):
		sift.process_image(imlist[i],featlist[i])

	voc = vocabularly.Vocabulary('ukbenchtest')
	voc.train(featlist,1000,10)

	with open('vocabulary.pkl', 'wb') as f:
		pickle.dump(voc,f)
	print 'vocabulary is:', voc.name, voc.nbr_wods


	nbr_images = len(imlist)

	with open('vocabulary.pkl', 'rb') as f:
		voc = pickle.load(f)


	indx = imagesearch.Indexer('test.db',voc)
	indx.create_tables()

	for i in range(nbr_images)[:100]:
		locs,descr = sift.read_features_from_file(featlist[i])
		indx.add_to_index(imlist[i],descr)

	indx.db_commit()


	con = sqlite.connect('test.db')
	print con.execute('select count (filename) from imlist').fetchone()
	print con.execute('select * from imlist').fetchone()


	src = imagesearch.Searcher('test.db')
	locs,descr = sift.read_features_from_file(featlist[0])
	iw = voc.project(descr)

	print 'ask using a histogram...'
	print src.candidates_from_histogram(iw)[:10]

	print 'try a query...'
	print src.query(imlist[0])[:10]
开发者ID:rickbhardwaj,项目名称:videoprocessing,代码行数:46,代码来源:ImageSearchMain.py

示例15: extractSift

def extractSift(input_files):
	print "extracting Sift features"
	all_features_dict = {}

	#all_features = zeros([1,128])
	for i, fname in enumerate(input_files):
		features_fname = fname + '.sift'
		if exists(features_fname) == False:
			print "calculating sift features for", fname
			sift.process_image(fname, features_fname)
		locs, descriptors = sift.read_features_from_file(features_fname)
		# print descriptors.shape
		all_features_dict[fname] = descriptors
		# if all_features.shape[0] == 1:
		# 	all_features = descriptors
		# else:
		# 	all_features = concatenate((all_features, descriptors), axis = 0)
	return all_features_dict
开发者ID:kds079,项目名称:Top-K-Photos-in-a-Local-Region,代码行数:18,代码来源:testsift.py


注:本文中的sift.process_image函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。