当前位置: 首页>>代码示例>>Python>>正文


Python TimeStepping.computeOneStep方法代码示例

本文整理汇总了Python中siconos.kernel.TimeStepping.computeOneStep方法的典型用法代码示例。如果您正苦于以下问题:Python TimeStepping.computeOneStep方法的具体用法?Python TimeStepping.computeOneStep怎么用?Python TimeStepping.computeOneStep使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在siconos.kernel.TimeStepping的用法示例。


在下文中一共展示了TimeStepping.computeOneStep方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_serialization4

# 需要导入模块: from siconos.kernel import TimeStepping [as 别名]
# 或者: from siconos.kernel.TimeStepping import computeOneStep [as 别名]

#.........这里部分代码省略.........
    inter = Interaction(1, nslaw, relation)

    #
    # Model
    #
    first_bouncingBall = Model(t0, T)

    # add the dynamical system to the non smooth dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)

    # link the interaction and the dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = MoreauJeanOSI(theta)

    # (2) Time discretisation --
    t = TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = TimeStepping(t)
    s.insertIntegrator(OSI)
    s.insertNonSmoothProblem(osnspb)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    first_bouncingBall.setSimulation(s)
    first_bouncingBall.initialize()

    #
    # save and load data from xml and .dat
    #
    from siconos.io.io_base import save, load
    save(first_bouncingBall, "bouncingBall.xml")

    bouncingBall = load("bouncingBall.xml")

    # the number of time steps
    N = (T-t0)/h+1

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty((N, 5))

    #
    # numpy pointers on dense Siconos vectors
    #
    q = ball.q()
    v = ball.velocity()
    p = ball.p(1)
    lambda_ = inter.lambda_(1)

    #
    # initial data
    #
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = q[0]
    dataPlot[0, 2] = v[0]
    dataPlot[0, 3] = p[0]
    dataPlot[0, 4] = lambda_[0]

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()

        dataPlot[k, 0] = s.nextTime()
        dataPlot[k, 1] = q[0]
        dataPlot[k, 2] = v[0]
        dataPlot[k, 3] = p[0]
        dataPlot[k, 4] = lambda_[0]

        k += 1
        print(s.nextTime())
        s.nextStep()

    #
    # comparison with the reference file
    #
    from siconos.kernel import SimpleMatrix, getMatrix
    from numpy.linalg import norm

    ref = getMatrix(SimpleMatrix(os.path.join(working_dir,
                                              "data/result.ref")))

    assert (norm(dataPlot - ref) < 1e-12)
开发者ID:radarsat1,项目名称:siconos,代码行数:104,代码来源:test_serialization.py

示例2:

# 需要导入模块: from siconos.kernel import TimeStepping [as 别名]
# 或者: from siconos.kernel.TimeStepping import computeOneStep [as 别名]

#
# initial data
#
dataPlot[0, 0] = t0
dataPlot[0, 1] = q[0]
dataPlot[0, 2] = v[0]
dataPlot[0, 3] = p[0]
dataPlot[0, 4] = lambda_[0]

k = 1

# time loop
while s.hasNextEvent():
    s.computeOneStep()

    dataPlot[k, 0] = s.nextTime()
    dataPlot[k, 1] = q[0]
    dataPlot[k, 2] = v[0]
    dataPlot[k, 3] = p[0]
    dataPlot[k, 4] = lambda_[0]

    k += 1
    s.nextStep()

#
# comparison with the reference file
#
from siconos.kernel import SimpleMatrix, getMatrix
from numpy.linalg import norm
开发者ID:yushuiqiang,项目名称:siconos,代码行数:32,代码来源:BouncingBallTS.py

示例3: empty

# 需要导入模块: from siconos.kernel import TimeStepping [as 别名]
# 或者: from siconos.kernel.TimeStepping import computeOneStep [as 别名]
# This is not working right now
#eventsManager = s.eventsManager()

# Matrix for data storage
dataPlot = empty((N+1, outputSize))
#dataPlot[0, 0] = processDS.t0()
dataPlot[0, 0] = t0
dataPlot[0, 1] = processDS.x()[0]
dataPlot[0, 2] = processDS.x()[1]
dataPlot[0, 3] = processDS.z()[0]
dataPlot[0, 4] = processDS.z()[1]

# Main loop
k = 1
while(processSimulation.hasNextEvent()):
    processSimulation.computeOneStep()
    dataPlot[k, 0] = processSimulation.nextTime()
    dataPlot[k, 1] = processDS.x()[0]
    dataPlot[k, 2] = processDS.x()[1]
    dataPlot[k, 3] = processDS.z()[0]
    dataPlot[k, 4] = processDS.z()[1]
    k += 1
    print processSimulation.nextTime()
    processSimulation.nextStep()
# Resize matrix
dataPlot.resize(k, outputSize)
# Save to disk
savetxt('SMCExampleImplicitOT2-py.dat', dataPlot)
# Plot interesting data
subplot(411)
title('x1')
开发者ID:fperignon,项目名称:siconos,代码行数:33,代码来源:SMCExampleImplicitOT2.py

示例4: print

# 需要导入模块: from siconos.kernel import TimeStepping [as 别名]
# 或者: from siconos.kernel.TimeStepping import computeOneStep [as 别名]
print("Number of steps : ",N)

# Get the values to be plotted
# ->saved in a matrix dataPlot

from numpy import empty
dataPlot = empty([N+1,8])

x = LSRelayOscillator.x()
print("Initial state : ",x)
y = InterRelayOscillator.y(0)
print("First y : ",y)
lambda_ = InterRelayOscillator.lambda_(0)

while (k < N):
    aTS.computeOneStep()
    #aLCP.display()
    dataPlot[k, 0] = aTS.nextTime()
    #  inductor voltage
    dataPlot[k, 1] = x[0]
    dataPlot[k, 2] = x[1]
    dataPlot[k, 3] = x[2]
    dataPlot[k, 4] = y[0]
    dataPlot[k, 5] = lambda_[0]


    k += 1
    if k%1000==0:
        print("step =", k, " < ", N)
    aTS.nextStep()
开发者ID:yushuiqiang,项目名称:siconos,代码行数:32,代码来源:RelayOscillator.py

示例5: test_diode_bridge

# 需要导入模块: from siconos.kernel import TimeStepping [as 别名]
# 或者: from siconos.kernel.TimeStepping import computeOneStep [as 别名]
def test_diode_bridge():
    """Build diode bridge model"""
    # dynamical system
    bridge_ds = FirstOrderLinearDS(init_state, A)
    # interaction
    diode_bridge_relation = FirstOrderLinearTIR(C, B)
    diode_bridge_relation.setDPtr(D)

    nslaw = ComplementarityConditionNSL(4)
    bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1)

    # Model
    diode_bridge = Model(t0, total_time, model_title)

    #  add the dynamical system in the non smooth dynamical system
    diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds)

    #   link the interaction and the dynamical system
    diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds)

    # Simulation

    # (1) OneStepIntegrators
    theta = 0.5
    integrator = EulerMoreauOSI(theta)
    # (2) Time discretisation
    time_discretisation = TimeDiscretisation(t0, time_step)

    # (3) Non smooth problem
    non_smooth_problem = LCP()

    # (4) Simulation setup with (1) (2) (3)
    bridge_simulation = TimeStepping(time_discretisation,
                                     integrator, non_smooth_problem)

    # simulation initialization
    diode_bridge.setSimulation(bridge_simulation)
    diode_bridge.initialize()
    k = 0
    h = bridge_simulation.timeStep()
    # Number of time steps
    N = (total_time - t0) / h

    # Get the values to be plotted
    # ->saved in a matrix dataPlot
    data_plot = empty([N, 8])

    x = bridge_ds.x()
    print("Initial state : ", x)
    y = bridge_interaction.y(0)
    print("First y : ", y)
    lambda_ = bridge_interaction.lambda_(0)

    # For the initial time step:
    # time
    data_plot[k, 0] = t0

    #  inductor voltage
    data_plot[k, 1] = x[0]

    # inductor current
    data_plot[k, 2] = x[1]

    # diode R1 current
    data_plot[k, 3] = y[0]

    # diode R1 voltage
    data_plot[k, 4] = - lambda_[0]

    # diode F2 voltage
    data_plot[k, 5] = - lambda_[1]

    # diode F1 current
    data_plot[k, 6] = lambda_[2]

    # resistor current
    data_plot[k, 7] = y[0] + lambda_[2]

    k += 1
    while k < N:
        bridge_simulation.computeOneStep()
        #non_smooth_problem.display()
        data_plot[k, 0] = bridge_simulation.nextTime()
        #  inductor voltage
        data_plot[k, 1] = x[0]
        # inductor current
        data_plot[k, 2] = x[1]
        # diode R1 current
        data_plot[k, 3] = y[0]
        # diode R1 voltage
        data_plot[k, 4] = - lambda_[0]
        # diode F2 voltage
        data_plot[k, 5] = - lambda_[1]
        # diode F1 current
        data_plot[k, 6] = lambda_[2]
        # resistor current
        data_plot[k, 7] = y[0] + lambda_[2]
        k += 1
        bridge_simulation.nextStep()

#.........这里部分代码省略.........
开发者ID:radarsat1,项目名称:siconos,代码行数:103,代码来源:test_diode_bridge.py

示例6: test_smc1

# 需要导入模块: from siconos.kernel import TimeStepping [as 别名]
# 或者: from siconos.kernel.TimeStepping import computeOneStep [as 别名]
def test_smc1():
    from siconos.kernel import FirstOrderLinearDS, Model, TimeDiscretisation, \
        TimeStepping, ZeroOrderHoldOSI, TD_EVENT
    from siconos.control.simulation import ControlManager
    from siconos.control.sensor import LinearSensor
    from siconos.control.controller import LinearSMCOT2
    from numpy import eye, empty, zeros
    import numpy as np
    from math import ceil, sin

    # Derive our own version of FirstOrderLinearDS
    class MyFOLDS(FirstOrderLinearDS):
        def computeb(self, time):
            t = sin(50*time)
            # XXX fix this !
            u = [t, -t]
            self.setb(u)

    # variable declaration
    ndof = 2   # Number of degrees of freedom of your system
    t0 = 0.0   # start time
    T = 1    # end time
    h = 1.0e-4  # time step for simulation
    hControl = 1.0e-2  # time step for control
    Xinit = 1.0  # initial position
    N = ceil((T-t0)/h + 10)  # number of time steps
    outputSize = 4  # number of variable to store at each time step

    # Matrix declaration
    A = zeros((ndof, ndof))
    x0 = [Xinit, -Xinit]
    Brel = np.array([[0], [1]])
    sensorC = eye(ndof)
    sensorD = zeros((ndof, ndof))
    Csurface = [[0, 1.0]]

    # Simple check
    if h > hControl:
        print("hControl must be bigger than h")
        exit(1)

    # Declaration of the Dynamical System
    processDS = MyFOLDS(x0, A)
    # XXX b is not automatically created ...
#    processDS.setb([0, 0])
    # Model
    process = Model(t0, T)
    process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS)
    # time discretization
    processTD = TimeDiscretisation(t0, h)
    tSensor = TimeDiscretisation(t0, hControl)
    tActuator = TimeDiscretisation(t0, hControl)
    # Creation of the Simulation
    processSimulation = TimeStepping(processTD, 0)
    processSimulation.setName("plant simulation")
    # Declaration of the integrator
    processIntegrator = ZeroOrderHoldOSI()
    process.nonSmoothDynamicalSystem().setOSI(processDS, processIntegrator)
    processSimulation.insertIntegrator(processIntegrator)
    # Actuator, Sensor & ControlManager
    control = ControlManager(processSimulation)
    sens = LinearSensor(processDS, sensorC, sensorD)

    control.addSensorPtr(sens, tSensor)
    act = LinearSMCOT2(sens)
    act.setCsurface(Csurface)
    act.setB(Brel)
    control.addActuatorPtr(act, tActuator)

    # Initialization.
    process.initialize(processSimulation)
    control.initialize(process)
    # This is not working right now
    # eventsManager = s.eventsManager()

    # Matrix for data storage
    dataPlot = empty((3*(N+1), outputSize))
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = processDS.x()[0]
    dataPlot[0, 2] = processDS.x()[1]
    dataPlot[0, 3] = act.u()[0]

    # Main loop
    k = 1
    while processSimulation.hasNextEvent():
        if processSimulation.eventsManager().nextEvent().getType() == TD_EVENT:
            processSimulation.computeOneStep()
        dataPlot[k, 0] = processSimulation.nextTime()
        dataPlot[k, 1] = processDS.x()[0]
        dataPlot[k, 2] = processDS.x()[1]
        dataPlot[k, 3] = act.u()[0]
        k += 1
        processSimulation.nextStep()
    #    print processSimulation.nextTime()
    # Resize matrix
    dataPlot.resize(k, outputSize)
开发者ID:xhub,项目名称:siconos,代码行数:98,代码来源:test_smc.py

示例7: test_diodebridge1

# 需要导入模块: from siconos.kernel import TimeStepping [as 别名]
# 或者: from siconos.kernel.TimeStepping import computeOneStep [as 别名]

#.........这里部分代码省略.........

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    theta = 0.5
    aOSI = EulerMoreauOSI(LSDiodeBridge, theta)

    # (2) Time discretisation
    aTiDisc = TimeDiscretisation(t0, h_step)

    # (3) Non smooth problem
    aLCP = LCP()

    # (4) Simulation setup with (1) (2) (3)
    aTS = TimeStepping(aTiDisc, aOSI, aLCP)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    DiodeBridge.initialize(aTS)

    k = 0
    h = aTS.timeStep()
    print("Timestep : ", h)
    # Number of time steps
    N = (T-t0)/h
    print("Number of steps : ", N)

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty([N, 8])

    x = LSDiodeBridge.x()
    print("Initial state : ", x)
    y = InterDiodeBridge.y(0)
    print("First y : ", y)
    lambda_ = InterDiodeBridge.lambda_(0)

    # For the initial time step:
    # time
    dataPlot[k, 0] = t0

    #  inductor voltage
    dataPlot[k, 1] = x[0]

    # inductor current
    dataPlot[k, 2] = x[1]

    # diode R1 current
    dataPlot[k, 3] = y[0]

    # diode R1 voltage
    dataPlot[k, 4] = - lambda_[0]

    # diode F2 voltage
    dataPlot[k, 5] = - lambda_[1]

    # diode F1 current
    dataPlot[k, 6] = lambda_[2]

    # resistor current
    dataPlot[k, 7] = y[0] + lambda_[2]

    k += 1
    while (k < N):
        aTS.computeOneStep()
        #aLCP.display()
        dataPlot[k, 0] = aTS.nextTime()
        #  inductor voltage
        dataPlot[k, 1] = x[0]
        # inductor current
        dataPlot[k, 2] = x[1]
        # diode R1 current
        dataPlot[k, 3] = y[0]
        # diode R1 voltage
        dataPlot[k, 4] = - lambda_[0]
        # diode F2 voltage
        dataPlot[k, 5] = - lambda_[1]
        # diode F1 current
        dataPlot[k, 6] = lambda_[2]
        # resistor current
        dataPlot[k, 7] = y[0] + lambda_[2]
        k += 1
        aTS.nextStep()

    #
    # comparison with the reference file
    #
    ref = getMatrix(SimpleMatrix(os.path.join(working_dir,"data/diode_bridge.ref")))

    print(norm(dataPlot - ref))
    assert (norm(dataPlot - ref) < 1e-12)
    return ref, dataPlot
开发者ID:fperignon,项目名称:siconos,代码行数:104,代码来源:test_diode_bridge.py


注:本文中的siconos.kernel.TimeStepping.computeOneStep方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。