当前位置: 首页>>代码示例>>Python>>正文


Python CombinedKernel.init方法代码示例

本文整理汇总了Python中shogun.Kernel.CombinedKernel.init方法的典型用法代码示例。如果您正苦于以下问题:Python CombinedKernel.init方法的具体用法?Python CombinedKernel.init怎么用?Python CombinedKernel.init使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在shogun.Kernel.CombinedKernel的用法示例。


在下文中一共展示了CombinedKernel.init方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_weighted_spectrum_kernel

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def get_weighted_spectrum_kernel(subfeats_list, options):
	"""build weighted spectrum kernel with non-redundant k-mer list (removing reverse complement)

	Arguments:
	subfeats_list -- list of sub-feature objects
	options -- object containing option data 

	Return:
	CombinedFeatures of StringWord(Ulong)Features, CombinedKernel of CommWord(Ulong)StringKernel 
	"""
	kmerlen = options.kmerlen
	kmerlen2 = options.kmerlen2

	subkernels = 0
	kernel = CombinedKernel()
	feats = CombinedFeatures()

	for subfeats in subfeats_list:
		feats.append_feature_obj(subfeats)

	for k in xrange(kmerlen, kmerlen2+1):
		if k <= 8:
			subkernel = CommWordStringKernel(10, False)
		else:
			subkernel = CommUlongStringKernel(10, False)

		kernel.append_kernel(subkernel)
		subkernels+=1

	kernel.init(feats, feats)

	kernel.set_subkernel_weights(numpy.array([1/float(subkernels)]*subkernels, numpy.dtype('float64')))

	return kernel
开发者ID:aleasoni,项目名称:Summer-Research-2013,代码行数:36,代码来源:kmersvm_train.py

示例2: kernel_combined_modular

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def kernel_combined_modular(fm_train_real=traindat,fm_test_real=testdat,fm_train_dna=traindna,fm_test_dna=testdna ):
	from shogun.Kernel import CombinedKernel, GaussianKernel, FixedDegreeStringKernel, LocalAlignmentStringKernel
	from shogun.Features import RealFeatures, StringCharFeatures, CombinedFeatures, DNA

	kernel=CombinedKernel()
	feats_train=CombinedFeatures()
	feats_test=CombinedFeatures()

	subkfeats_train=RealFeatures(fm_train_real)
	subkfeats_test=RealFeatures(fm_test_real)
	subkernel=GaussianKernel(10, 1.1)
	feats_train.append_feature_obj(subkfeats_train)
	feats_test.append_feature_obj(subkfeats_test)
	kernel.append_kernel(subkernel)

	subkfeats_train=StringCharFeatures(fm_train_dna, DNA)
	subkfeats_test=StringCharFeatures(fm_test_dna, DNA)
	degree=3
	subkernel=FixedDegreeStringKernel(10, degree)
	feats_train.append_feature_obj(subkfeats_train)
	feats_test.append_feature_obj(subkfeats_test)
	kernel.append_kernel(subkernel)

	subkfeats_train=StringCharFeatures(fm_train_dna, DNA)
	subkfeats_test=StringCharFeatures(fm_test_dna, DNA)
	subkernel=LocalAlignmentStringKernel(10)
	feats_train.append_feature_obj(subkfeats_train)
	feats_test.append_feature_obj(subkfeats_test)
	kernel.append_kernel(subkernel)

	kernel.init(feats_train, feats_train)
	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
开发者ID:coodoing,项目名称:shogun,代码行数:37,代码来源:kernel_combined_modular.py

示例3: mkl_multiclass

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def mkl_multiclass ():
	print 'mkl_multiclass'

	from shogun.Features import CombinedFeatures, RealFeatures, Labels
	from shogun.Kernel import CombinedKernel, GaussianKernel, LinearKernel,PolyKernel
	from shogun.Classifier import MKLMultiClass


	width=1.2
	C=1.2
	epsilon=1e-5
	num_threads=1


	kernel=CombinedKernel()
	feats_train=CombinedFeatures()
	feats_test=CombinedFeatures()

	subkfeats_train=RealFeatures(fm_train_real)
	subkfeats_test=RealFeatures(fm_test_real)
	subkernel=GaussianKernel(10, width)
	feats_train.append_feature_obj(subkfeats_train)
	feats_test.append_feature_obj(subkfeats_test)
	kernel.append_kernel(subkernel)


	subkfeats_train=RealFeatures(fm_train_real)
	subkfeats_test=RealFeatures(fm_test_real)
	subkernel=LinearKernel()
	feats_train.append_feature_obj(subkfeats_train)
	feats_test.append_feature_obj(subkfeats_test)
	kernel.append_kernel(subkernel)


	subkfeats_train=RealFeatures(fm_train_real)
	subkfeats_test=RealFeatures(fm_test_real)
	subkernel=PolyKernel(10,2)
	feats_train.append_feature_obj(subkfeats_train)
	feats_test.append_feature_obj(subkfeats_test)
	kernel.append_kernel(subkernel)
	
	kernel.init(feats_train, feats_train)


	labels=Labels(label_train_multiclass)

	mkl=MKLMultiClass(C, kernel, labels)
	
	mkl.set_epsilon(epsilon);
	mkl.parallel.set_num_threads(num_threads)
	mkl.set_mkl_epsilon(0.001)

	mkl.train()

	kernel.init(feats_train, feats_test)

	out= mkl.classify().get_labels()

	print out
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:61,代码来源:mkl_multiclass_modular.py

示例4: mkl_binclass_modular

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def mkl_binclass_modular (train_data, testdata, train_labels, test_labels, d1, d2):
        # create some Gaussian train/test matrix
    	tfeats = RealFeatures(train_data)
    	tkernel = GaussianKernel(128, d1)
    	tkernel.init(tfeats, tfeats)
    	K_train = tkernel.get_kernel_matrix()

    	pfeats = RealFeatures(test_data)
    	tkernel.init(tfeats, pfeats)
    	K_test = tkernel.get_kernel_matrix()

    	# create combined train features
    	feats_train = CombinedFeatures()
    	feats_train.append_feature_obj(RealFeatures(train_data))

    	# and corresponding combined kernel
    	kernel = CombinedKernel()
    	kernel.append_kernel(CustomKernel(K_train))
    	kernel.append_kernel(GaussianKernel(128, d2))
    	kernel.init(feats_train, feats_train)

    	# train mkl
    	labels = Labels(train_labels)
    	mkl = MKLClassification()
	
        # not to use svmlight
        mkl.set_interleaved_optimization_enabled(0)

    	# which norm to use for MKL
    	mkl.set_mkl_norm(2)

    	# set cost (neg, pos)
    	mkl.set_C(1, 1)

    	# set kernel and labels
    	mkl.set_kernel(kernel)
    	mkl.set_labels(labels)

    	# train
    	mkl.train()

    	# test
	# create combined test features
    	feats_pred = CombinedFeatures()
    	feats_pred.append_feature_obj(RealFeatures(test_data))

    	# and corresponding combined kernel
    	kernel = CombinedKernel()
    	kernel.append_kernel(CustomKernel(K_test))
    	kernel.append_kernel(GaussianKernel(128, d2))
    	kernel.init(feats_train, feats_pred)

	# and classify
    	mkl.set_kernel(kernel)
    	output = mkl.apply().get_labels()
	output = [1.0 if i>0 else -1.0 for i in output]
	accu = len(where(output == test_labels)[0]) / float(len(output))
	return accu
开发者ID:leiding326,项目名称:data-science,代码行数:60,代码来源:mkl_binclass_modular.py

示例5: training_run

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def training_run(options):
    """Conduct a training run and return a trained SVM kernel"""
    settings = MotifFinderSettings(kirmes_ini.MOTIF_LENGTH, options.window_width, options.replace)
    positives = MotifFinder(finder_settings=settings)
    positives.setFastaFile(options.positives)
    positives.setMotifs(options.pgff)
    pmotifs, ppositions = positives.getResults()
    negatives = MotifFinder(finder_settings=settings)
    negatives.setFastaFile(options.negatives)
    negatives.setMotifs(options.ngff)
    nmotifs, npositions = negatives.getResults()

    wds_kparams = kirmes_ini.WDS_KERNEL_PARAMETERS
    wds_svm = EasySVM.EasySVM(wds_kparams)
    num_positives = len(pmotifs.values()[0])
    num_negatives = len(nmotifs.values()[0])
    # Creating Kernel Objects
    kernel = CombinedKernel()
    features = CombinedFeatures()
    kernel_array = []
    motifs = pmotifs.keys()
    motifs.sort()
    # Adding Kmer Kernels
    for motif in motifs:
        all_examples = pmotifs[motif] + nmotifs[motif]
        motif_features = wds_svm.createFeatures(all_examples)
        wds_kernel = WeightedDegreePositionStringKernel(motif_features, motif_features, wds_kparams["degree"])
        wds_kernel.set_shifts(wds_kparams["shift"] * ones(wds_kparams["seqlength"], dtype=int32))
        features.append_feature_obj(motif_features)
        kernel_array.append(wds_kernel)
        kernel.append_kernel(wds_kernel)
    rbf_svm = EasySVM.EasySVM(kirmes_ini.RBF_KERNEL_PARAMETERS)
    positions = array(ppositions + npositions, dtype=float64).T
    position_features = rbf_svm.createFeatures(positions)
    features.append_feature_obj(position_features)
    motif_labels = append(ones(num_positives), -ones(num_negatives))
    complete_labels = Labels(motif_labels)
    rbf_kernel = GaussianKernel(position_features, position_features, kirmes_ini.RBF_KERNEL_PARAMETERS["width"])
    kernel_array.append(rbf_kernel)
    kernel.append_kernel(rbf_kernel)
    # Kernel init
    kernel.init(features, features)
    kernel.set_cache_size(kirmes_ini.K_CACHE_SIZE)
    svm = LibSVM(kirmes_ini.K_COMBINED_C, kernel, complete_labels)
    svm.parallel.set_num_threads(kirmes_ini.K_NUM_THREADS)
    # Training
    svm.train()
    if not os.path.exists(options.output_path):
        os.mkdir(options.output_path)
    html = {}
    if options.contrib:
        html["contrib"] = contrib(svm, kernel, motif_labels, kernel_array, motifs)
    if options.logos:
        html["poims"] = poims(svm, kernel, kernel_array, motifs, options.output_path)
    if options.query:
        html["query"] = evaluate(options, svm, kernel, features, motifs)
    htmlize(html, options.output_html)
开发者ID:veniciusgrjr,项目名称:oqtans_tools,代码行数:59,代码来源:kirmes.py

示例6: mkl_multiclass_modular

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def mkl_multiclass_modular(fm_train_real, fm_test_real, label_train_multiclass,
                           width, C, epsilon, num_threads, mkl_epsilon,
                           mkl_norm):

    from shogun.Features import CombinedFeatures, RealFeatures, MulticlassLabels
    from shogun.Kernel import CombinedKernel, GaussianKernel, LinearKernel, PolyKernel
    from shogun.Classifier import MKLMulticlass

    kernel = CombinedKernel()
    feats_train = CombinedFeatures()
    feats_test = CombinedFeatures()

    subkfeats_train = RealFeatures(fm_train_real)
    subkfeats_test = RealFeatures(fm_test_real)
    subkernel = GaussianKernel(10, width)
    feats_train.append_feature_obj(subkfeats_train)
    feats_test.append_feature_obj(subkfeats_test)
    kernel.append_kernel(subkernel)

    subkfeats_train = RealFeatures(fm_train_real)
    subkfeats_test = RealFeatures(fm_test_real)
    subkernel = LinearKernel()
    feats_train.append_feature_obj(subkfeats_train)
    feats_test.append_feature_obj(subkfeats_test)
    kernel.append_kernel(subkernel)

    subkfeats_train = RealFeatures(fm_train_real)
    subkfeats_test = RealFeatures(fm_test_real)
    subkernel = PolyKernel(10, 2)
    feats_train.append_feature_obj(subkfeats_train)
    feats_test.append_feature_obj(subkfeats_test)
    kernel.append_kernel(subkernel)

    kernel.init(feats_train, feats_train)

    labels = MulticlassLabels(label_train_multiclass)

    mkl = MKLMulticlass(C, kernel, labels)

    mkl.set_epsilon(epsilon)
    mkl.parallel.set_num_threads(num_threads)
    mkl.set_mkl_epsilon(mkl_epsilon)
    mkl.set_mkl_norm(mkl_norm)

    mkl.train()

    kernel.init(feats_train, feats_test)

    out = mkl.apply().get_labels()
    return out
开发者ID:joseph-chan,项目名称:rqpersonalsvn,代码行数:52,代码来源:mkl_multiclass_modular.py

示例7: train

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
    def train(self, data, labels):
        """
        model training 
        """

        # centered WDK/WDK-shift
        if self.param["shifts"] == 0:
            kernel_center = WeightedDegreeStringKernel(self.param["degree"])
        else:
            kernel_center = WeightedDegreePositionStringKernel(10, self.param["degree"])
            shifts_vector = numpy.ones(self.param["center_offset"]*2, dtype=numpy.int32)*self.param["shifts"]
            kernel_center.set_shifts(shifts_vector)

        kernel_center.set_cache_size(self.param["kernel_cache"]/3)

        # border spetrum kernels
        size = self.param["kernel_cache"]/3
        use_sign = False
        kernel_left = WeightedCommWordStringKernel(size, use_sign)
        kernel_right = WeightedCommWordStringKernel(size, use_sign)
        
        # assemble combined kernel
        kernel = CombinedKernel()
        kernel.append_kernel(kernel_center)
        kernel.append_kernel(kernel_left)
        kernel.append_kernel(kernel_right)

        ## building features 
        feat = create_features(data, self.param["center_offset"], self.param["center_pos"])
        
        # init combined kernel
        kernel.init(feat, feat)

        print "len(labels) = %i" % (len(labels))
        lab = BinaryLabels(numpy.double(labels))
        self.svm = SVMLight(self.param["cost"], kernel, lab)

        # show debugging output
        self.svm.io.enable_progress()
        self.svm.io.set_loglevel(MSG_DEBUG)

        # optimization settings
        num_threads = 2
        self.svm.parallel.set_num_threads(num_threads)
        self.svm.set_epsilon(10e-8)

        self.svm.train()

        return self
开发者ID:kuod,项目名称:genomeutils,代码行数:51,代码来源:promoter_kernel.py

示例8: mkl_binclass_modular

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def mkl_binclass_modular(fm_train_real=traindat,
                         fm_test_real=testdat,
                         fm_label_twoclass=label_traindat):

    sc1 = StringCharFeatures(strings1, RAWBYTE)
    sc2 = StringCharFeatures(strings2, RAWBYTE)

    sfeats1 = StringWordFeatures(RAWBYTE)
    sfeats1.obtain_from_char(sc1, 0, 2, 0, False)
    skernel1 = CommWordStringKernel(10, False)
    skernel1.init(sfeats1, sfeats1)
    sfeats2 = StringWordFeatures(RAWBYTE)
    sfeats2.obtain_from_char(sc2, 0, 2, 0, False)
    skernel2 = CommWordStringKernel(10, False)
    skernel2.init(sfeats2, sfeats2)

    ffeats = RealFeatures(traindat)
    fkernel = LinearKernel(ffeats, ffeats)

    fffeats = RealFeatures(traindat)
    ffkernel = GaussianKernel(fffeats, fffeats, 1.0)

    # COMBINING LINADD FEATURES/KERNELS LEAD TO FAIL
    feats_train = CombinedFeatures()
    feats_train.append_feature_obj(ffeats)
    #feats_train.append_feature_obj(fffeats)
    feats_train.append_feature_obj(sfeats2)

    print feats_train.get_num_vectors()

    kernel = CombinedKernel()
    kernel.append_kernel(fkernel)
    #kernel.append_kernel(ffkernel)
    kernel.append_kernel(skernel2)
    kernel.init(feats_train, feats_train)

    labels = RegressionLabels(fm_label_twoclass)
    mkl = MKLRegression()

    mkl.set_mkl_norm(1)  #2,3
    mkl.set_C(1, 1)
    mkl.set_kernel(kernel)
    mkl.set_labels(labels)

    mkl.io.enable_file_and_line()
    mkl.io.set_loglevel(MSG_DEBUG)
开发者ID:aeweiwi,项目名称:shogun,代码行数:48,代码来源:mkl_linadd_regression.py

示例9: kernel_combined_custom_poly_modular

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def kernel_combined_custom_poly_modular(fm_train_real = traindat,fm_test_real = testdat,fm_label_twoclass=label_traindat):
    from shogun.Features import CombinedFeatures, RealFeatures, BinaryLabels
    from shogun.Kernel import CombinedKernel, PolyKernel, CustomKernel
    from shogun.Classifier import LibSVM
   
    kernel = CombinedKernel()
    feats_train = CombinedFeatures()
    
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, tfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))
        
    subkfeats_train = RealFeatures(fm_train_real)
    feats_train.append_feature_obj(subkfeats_train)
    subkernel = PolyKernel(10,2)
    kernel.append_kernel(subkernel)

    kernel.init(feats_train, feats_train)
    
    labels = BinaryLabels(fm_label_twoclass)
    svm = LibSVM(1.0, kernel, labels)
    svm.train()

    kernel = CombinedKernel()
    feats_pred = CombinedFeatures()

    pfeats = RealFeatures(fm_test_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, pfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))

    subkfeats_test = RealFeatures(fm_test_real)
    feats_pred.append_feature_obj(subkfeats_test)
    subkernel = PolyKernel(10, 2)
    kernel.append_kernel(subkernel)
    kernel.init(feats_train, feats_pred)

    svm.set_kernel(kernel)
    svm.apply()
    km_train=kernel.get_kernel_matrix()
    return km_train,kernel
开发者ID:behollis,项目名称:muViewBranch,代码行数:46,代码来源:kernel_combined_custom_poly_modular.py

示例10: create_combined_wd_kernel

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def create_combined_wd_kernel(instances, param):
    """
    creates a combined wd kernel object
    """

    num_features = len(instances[0])

    # contruct combined features
    kernel = CombinedKernel()
    
    for idx in range(num_features): 
        
        param.kernel = "WeightedDegreeStringKernel"
        
        tmp_kernel = create_empty_kernel(param)
        kernel.append_kernel(tmp_kernel)

    combined_features = create_combined_wd_features(instances, feat_type="dna")

    kernel.init(combined_features, combined_features)
    
    return kernel
开发者ID:cwidmer,项目名称:multitask,代码行数:24,代码来源:shogun_factory_new.py

示例11: Labels

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
#feats_test.append_feature_obj(RealFeatures(testdata_real))
#feats_test.append_feature_obj(RealFeatures(testdata_real))
#feats_test.append_feature_obj(RealFeatures(testdata_real))
#feats_test.append_feature_obj(RealFeatures(testdata_real))
#feats_test.append_feature_obj(RealFeatures(testdata_real))

labels = Labels(trainlab)

# and corresponding combined kernel
kernel = CombinedKernel()
kernel.append_kernel(GaussianKernel(10, 2.0))
kernel.append_kernel(GaussianKernel(10, 0.25))
kernel.append_kernel(GaussianKernel(10, 0.062))
kernel.append_kernel(GaussianKernel(10, 8.0))
kernel.append_kernel(GaussianKernel(10, 10.0))
kernel.init(feats_train, feats_train)

# Create a classifier
classifier=MKLClassification(LibSVM())
classifier.set_interleaved_optimization_enabled(False)
classifier.set_kernel(kernel)
classifier.set_labels(labels)
classifier.set_C(1, 1)

param_tree_root=ModelSelectionParameters()

# () C1 parameter to the tree
c1=ModelSelectionParameters("C1"); 
c1.build_values(-4.0, 4.0, R_EXP);
param_tree_root.append_child(c1)
开发者ID:nickponline,项目名称:mkl,代码行数:32,代码来源:irimklms.py

示例12: SignalSensor

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
class SignalSensor(object):
    """
    A collection of sensors
    """
    def __init__(self):
        self.sensors = list()
        self.kernel = CombinedKernel()
        self.svs = CombinedFeatures()
        self.svm = None
        self.window = (+100000, -1000000)

    def from_file(self, file):
        sys.stderr.write('loading model file')
        l = file.readline();

        if l != '%arts version: 1.0\n':
            sys.stderr.write("\nfile not an arts definition file\n")
            return None

        bias = None
        alphas = None
        num_kernels = None

        while l:
            # skip comment or empty line
            if not (l.startswith('%') or l.startswith('\n')):
                if bias is None: bias = parse_float(l, 'b')
                if alphas is None: alphas = parse_vector(l, file, 'alphas')
                if num_kernels is None: num_kernels = parse_int(l, 'num_kernels')

                if num_kernels and bias and alphas is not None:
                    for i in xrange(num_kernels):
                        s = Sensor()
                        (k, f) = s.from_file(file, i + 1)
                        k.io.enable_progress()
                        self.window = (min(self.window[0], s.window[0]),
                                max(self.window[1], s.window[2]))
                        self.sensors.append(s)
                        self.kernel.append_kernel(k)
                        self.svs.append_feature_obj(f)

                    self.kernel.init(self.svs, self.svs)
                    self.svm = SVM(self.kernel, alphas,
                            numpy.arange(len(alphas), dtype=numpy.int32), bias)
                    self.svm.io.set_target_to_stderr()
                    self.svm.io.enable_progress()
                    self.svm.parallel.set_num_threads(self.svm.parallel.get_num_cpus())
                    sys.stderr.write('done\n')
                    return

            l = file.readline()

        sys.stderr.write('error loading model file\n')


    def predict(self, seq, chunk_size = int(10e6)):
        """
        predicts on whole contig, splits up sequence in chunks of size chunk_size
        """

        seq_len = len(seq)
        num_chunks = int(numpy.ceil(float(seq_len) / float(chunk_size)))
        assert(num_chunks > 0)

    	sys.stderr.write("number of chunks for contig: %i\n" % (num_chunks))

        start = 0
        stop = min(chunk_size, seq_len)
		
        out = []

        # iterate over chunks
        for chunk_idx in range(num_chunks):

            sys.stderr.write("processing chunk #%i\n" % (chunk_idx))

            assert (start < stop)
            chunk = seq[start:stop]

            assert(len(self.sensors) > 0)
            tf = CombinedFeatures()
            for i in xrange(len(self.sensors)):
                f = self.sensors[i].get_test_features(chunk, self.window)
                tf.append_feature_obj(f)

            sys.stderr.write("initialising kernel...")
            self.kernel.init(self.svs, tf)
            sys.stderr.write("..done\n")

            lab_out = self.svm.apply()

            # work around problem with get_labels()
            tmp_out = [lab_out.get_label(idx) for idx in range(0, lab_out.get_num_labels())]
            assert(len(tmp_out) > 0)
            out.extend(tmp_out)

            print "len out", len(out)

            # increment chunk
            start = stop
#.........这里部分代码省略.........
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:103,代码来源:signal_sensor.py

示例13: _train

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        

        #numpy.random.seed(1337)
        numpy.random.seed(666)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

                
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)


        # assemble combined kernel
        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_DEBUG)    
        # set kernel cache
        if param.flags.has_key("cache_size"):
            combined_kernel.set_cache_size(param.flags["cache_size"])
        

        # create features
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        


        ########################################################
        print "creating a masked kernel for each node:"
        ########################################################
        

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        # create name to leaf map
        nodes = taxonomy.get_all_nodes()

        
        for node in nodes:
            
            print "creating kernel for ", node.name
            
            # fetch sub-tree
            active_task_ids = [data.name_to_id(leaf.name) for leaf in node.get_leaves()]
            
            print "masking all entries other than:", active_task_ids
            
        
            # create mask-based normalizer
            normalizer = MultitaskKernelMaskNormalizer(data.task_vector_nums, data.task_vector_nums, active_task_ids)
            
            # normalize trace
            if param.flags.has_key("normalize_trace") and param.flags["normalize_trace"]:
                norm_factor = len(node.get_leaves()) / len(active_task_ids)
                normalizer.set_normalization_constant(norm_factor)
            
            # create kernel
            kernel = shogun_factory.create_empty_kernel(param)
            kernel.set_normalizer(normalizer)
            
            
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel)
        
            # append features
            combined_features.append_feature_obj(base_features)

            print "------"
        

        combined_kernel.init(combined_features, combined_features)                
        #combined_kernel.precompute_subkernels()
                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                        
        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        
        if param.flags["mkl_q"] >= 1.0:
            
            # set up MKL    
            svm = MKLClassification()

            # set the "q" in q-norm MKL
            svm.set_mkl_norm(param.flags["mkl_q"])
            
            # set interleaved optimization
#.........这里部分代码省略.........
开发者ID:cwidmer,项目名称:multitask,代码行数:103,代码来源:method_multitask_kernel_mkl_mask.py

示例14: mkl_binclass_modular

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]
def mkl_binclass_modular(fm_train_real=traindat, fm_test_real=testdat, fm_label_twoclass=label_traindat):

    ##################################
    # set up and train

    # create some poly train/test matrix
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10, 3)
    tkernel.init(tfeats, tfeats)
    K_train = tkernel.get_kernel_matrix()

    pfeats = RealFeatures(fm_test_real)
    tkernel.init(tfeats, pfeats)
    K_test = tkernel.get_kernel_matrix()

    # create combined train features
    feats_train = CombinedFeatures()
    feats_train.append_feature_obj(RealFeatures(fm_train_real))

    # and corresponding combined kernel
    kernel = CombinedKernel()
    kernel.append_kernel(CustomKernel(K_train))
    kernel.append_kernel(PolyKernel(10, 2))
    kernel.init(feats_train, feats_train)

    # train mkl
    labels = BinaryLabels(fm_label_twoclass)
    mkl = MKLClassification()

    # which norm to use for MKL
    mkl.set_mkl_norm(1)  # 2,3

    # set cost (neg, pos)
    mkl.set_C(1, 1)

    # set kernel and labels
    mkl.set_kernel(kernel)
    mkl.set_labels(labels)

    # train
    mkl.train()
    # w=kernel.get_subkernel_weights()
    # kernel.set_subkernel_weights(w)

    ##################################
    # test

    # create combined test features
    feats_pred = CombinedFeatures()
    feats_pred.append_feature_obj(RealFeatures(fm_test_real))

    # and corresponding combined kernel
    kernel = CombinedKernel()
    kernel.append_kernel(CustomKernel(K_test))
    kernel.append_kernel(PolyKernel(10, 2))
    kernel.init(feats_train, feats_pred)

    # and classify
    mkl.set_kernel(kernel)
    mkl.apply()
    return mkl.apply(), kernel
开发者ID:behollis,项目名称:muViewBranch,代码行数:63,代码来源:mkl_binclass_modular.py

示例15: _train

# 需要导入模块: from shogun.Kernel import CombinedKernel [as 别名]
# 或者: from shogun.Kernel.CombinedKernel import init [as 别名]

#.........这里部分代码省略.........
        
        
        #        hack_block_vec = PairiiVec()
        #        
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                hack_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #        
        #        hack_block_vec.push_back(Pairii(data.name_to_id("B_2705"), data.name_to_id("B_4001")))
        #        other_group = ["B_0702", "B_1501", "B_5801"]
        #        for task_id_1 in other_group:
        #            for task_id_2 in other_group:
        #                hack_block_vec.push_back(Pairii(data.name_to_id(task_id_1), data.name_to_id(task_id_2)))
        #        
        #        
        #        
        #        # create mask-based normalizer
        #        normalizer_hack = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, hack_block_vec)        
        #        kernel_hack = shogun_factory.create_empty_kernel(param)
        #        kernel_hack.set_normalizer(normalizer_hack)
        #                
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_hack)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        
        
        
            
        ##################################################
        # init combined kernel
        
        combined_kernel.init(combined_features, combined_features)    
        
            
        #combined_kernel.precompute_subkernels()
        self.additional_information["mkl weights before"] = combined_kernel.get_subkernel_weights()
        
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.flags["mkl_q"] >= 1.0)
        
        if param.flags["mkl_q"] >= 1.0:
            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.flags["mkl_q"])
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
        
        else:
            
            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            svm = SVMLight(param.cost, combined_kernel, lab)


        num_threads = 8
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        
        svm.parallel.set_num_threads(num_threads)
开发者ID:cwidmer,项目名称:multitask,代码行数:70,代码来源:method_multitask_kernel_mkl_mask_simplified.py


注:本文中的shogun.Kernel.CombinedKernel.init方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。