本文整理汇总了Python中shogun.Features.StringCharFeatures类的典型用法代码示例。如果您正苦于以下问题:Python StringCharFeatures类的具体用法?Python StringCharFeatures怎么用?Python StringCharFeatures使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了StringCharFeatures类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plugin_estimate_salzberg
def plugin_estimate_salzberg ():
print 'PluginEstimate w/ SalzbergWord'
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import SalzbergWordStringKernel
from shogun.Classifier import PluginEstimate
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
pie=PluginEstimate()
labels=Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel=SalzbergWordStringKernel(feats_train, feats_test, pie, labels)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.classify().get_labels()
km_test=kernel.get_kernel_matrix()
示例2: distribution_hmm_modular
def distribution_hmm_modular(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
from shogun.Features import StringWordFeatures, StringCharFeatures, CUBE
from shogun.Distribution import HMM, BW_NORMAL
charfeat=StringCharFeatures(CUBE)
charfeat.set_features(fm_cube)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=HMM(feats, N, M, pseudo)
hmm.train()
hmm.baum_welch_viterbi_train(BW_NORMAL)
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in xrange(num_examples):
for j in xrange(num_param):
hmm.get_log_derivative(j, i)
best_path=0
best_path_state=0
for i in xrange(num_examples):
best_path+=hmm.best_path(i)
for j in xrange(N):
best_path_state+=hmm.get_best_path_state(i, j)
lik_example = hmm.get_log_likelihood()
lik_sample = hmm.get_log_likelihood_sample()
return lik_example, lik_sample, hmm
示例3: distribution_linearhmm_modular
def distribution_linearhmm_modular (fm_dna=traindna,order=3,gap=0,reverse=False):
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import LinearHMM
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=LinearHMM(feats)
hmm.train()
hmm.get_transition_probs()
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in range(num_examples):
for j in range(num_param):
hmm.get_log_derivative(j, i)
out_likelihood = hmm.get_log_likelihood()
out_sample = hmm.get_log_likelihood_sample()
return hmm,out_likelihood ,out_sample
示例4: create_hashed_features_spectrum
def create_hashed_features_spectrum(param, data):
"""
creates hashed dot features for the spectrum kernel
"""
# extract parameters
order = param["degree_spectrum"]
# fixed parameters
gap = 0
reverse = True
normalize = True
# create features
feats_char = StringCharFeatures(data, DNA)
feats_word = StringWordFeatures(feats_char.get_alphabet())
feats_word.obtain_from_char(feats_char, order-1, order, gap, reverse)
# create preproc
preproc = SortWordString()
preproc.init(feats_word)
feats_word.add_preproc(preproc)
feats_word.apply_preproc()
# finish
feats = ImplicitWeightedSpecFeatures(feats_word, normalize)
return feats
示例5: create_promoter_features
def create_promoter_features(data, param):
"""
creates promoter combined features
@param examples:
@param param:
"""
print "creating promoter features"
(center, left, right) = split_data_promoter(data, param["center_offset"], param["center_pos"])
# set up base features
feat_center = StringCharFeatures(DNA)
feat_center.set_features(center)
feat_left = get_spectrum_features(left)
feat_right = get_spectrum_features(right)
# construct combined features
feat = CombinedFeatures()
feat.append_feature_obj(feat_center)
feat.append_feature_obj(feat_left)
feat.append_feature_obj(feat_right)
return feat
示例6: init_sensor
def init_sensor(self, kernel, svs):
f = StringCharFeatures(svs, DNA)
kname = kernel['name']
if kname == 'spectrum':
wf = StringWordFeatures(f.get_alphabet())
wf.obtain_from_char(f, kernel['order'] - 1, kernel['order'], 0, False)
pre = SortWordString()
pre.init(wf)
wf.add_preprocessor(pre)
wf.apply_preprocessor()
f = wf
k = CommWordStringKernel(0, False)
k.set_use_dict_diagonal_optimization(kernel['order'] < 8)
self.preproc = pre
elif kname == 'wdshift':
k = WeightedDegreePositionStringKernel(0, kernel['order'])
k.set_normalizer(IdentityKernelNormalizer())
k.set_shifts(kernel['shift'] *
numpy.ones(f.get_max_vector_length(), dtype=numpy.int32))
k.set_position_weights(1.0 / f.get_max_vector_length() *
numpy.ones(f.get_max_vector_length(), dtype=numpy.float64))
else:
raise "Currently, only wdshift and spectrum kernels supported"
self.kernel = k
self.train_features = f
return (self.kernel, self.train_features)
示例7: get_predictions_from_seqdict
def get_predictions_from_seqdict(self, seqdic, site):
""" we need to generate a huge test features object
containing all locations found in each seqdict-sequence
and each location (this is necessary to efficiently
(==fast,low memory) compute the splice outputs
"""
seqlen=self.window_right+self.window_left+2
for s in seqdic:
position_list=DynamicIntArray()
sequence=s.seq
positions=s.preds[site].positions
for j in xrange(len(positions)):
i=positions[j] - self.offset -self.window_left
position_list.append_element(i)
t=StringCharFeatures([sequence], DNA)
t.obtain_by_position_list(seqlen, position_list)
self.wd_kernel.init(self.traindat, t)
self.wd_kernel.io.enable_progress()
l=self.svm.apply().get_values()
self.wd_kernel.cleanup()
sys.stdout.write("\n...done...\n")
num=len(s.preds[site].positions)
scores= num * [0]
for j in xrange(num):
scores[j]=l[j]
s.preds[site].set_scores(scores)
示例8: sort_word_string
def sort_word_string ():
print 'CommWordString'
from shogun.Kernel import CommWordStringKernel
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
from shogun.PreProc import SortWordString
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preproc(preproc)
feats_train.apply_preproc()
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preproc(preproc)
feats_test.apply_preproc()
use_sign=False
kernel=CommWordStringKernel(feats_train, feats_train, use_sign)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
示例9: linear_hmm
def linear_hmm ():
print 'LinearHMM'
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import LinearHMM
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=LinearHMM(feats)
hmm.train()
hmm.get_transition_probs()
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in xrange(num_examples):
for j in xrange(num_param):
hmm.get_log_derivative(j, i)
hmm.get_log_likelihood()
hmm.get_log_likelihood_sample()
示例10: get_kernel_matrix
def get_kernel_matrix(li):
"""
Get kernel matrix from a list of strings.
"""
order = 6
gap = 2
reverse = False
charfeat = StringCharFeatures(RAWBYTE)
charfeat.set_features(li)
#Get alphabet.
feats_train = StringUlongFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
#CommUlongStringKernel needs sorted features.
preproc = SortUlongString()
preproc.init(feats_train)
feats_train.add_preproc(preproc)
feats_train.apply_preproc()
use_sign = False
#Compute kernel matrix between train features.
kernel = CommUlongStringKernel(feats_train, feats_train, use_sign)
km_train = kernel.get_kernel_matrix()
return km_train
示例11: kernel_salzberg_word_string_modular
def kernel_salzberg_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,
order=3,gap=0,reverse=False):
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import SalzbergWordStringKernel
from shogun.Classifier import PluginEstimate
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
pie=PluginEstimate()
labels=Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel=SalzbergWordStringKernel(feats_train, feats_train, pie, labels)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.classify().get_labels()
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例12: preproc_sortwordstring_modular
def preproc_sortwordstring_modular (fm_train_dna=traindna,fm_test_dna=testdna,order=3,gap=0,reverse=False,use_sign=False):
from shogun.Kernel import CommWordStringKernel
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
from shogun.PreProc import SortWordString
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preproc(preproc)
feats_train.apply_preproc()
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preproc(preproc)
feats_test.apply_preproc()
kernel=CommWordStringKernel(feats_train, feats_train, use_sign)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例13: kernel_weighted_comm_word_string_modular
def kernel_weighted_comm_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,order=3,gap=0,reverse=True ):
from shogun.Kernel import WeightedCommWordStringKernel
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Preprocessor import SortWordString
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preprocessor(preproc)
feats_train.apply_preprocessor()
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preprocessor(preproc)
feats_test.apply_preprocessor()
use_sign=False
kernel=WeightedCommWordStringKernel(feats_train, feats_train, use_sign)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例14: histogram
def histogram ():
print 'Histogram'
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import Histogram
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
histo=Histogram(feats)
histo.train()
histo.get_histogram()
num_examples=feats.get_num_vectors()
num_param=histo.get_num_model_parameters()
#for i in xrange(num_examples):
# for j in xrange(num_param):
# histo.get_log_derivative(j, i)
histo.get_log_likelihood()
histo.get_log_likelihood_sample()
示例15: get_wd_features
def get_wd_features(data, feat_type="dna"):
"""
create feature object for wdk
"""
if feat_type == "dna":
feat = StringCharFeatures(DNA)
elif feat_type == "protein":
feat = StringCharFeatures(PROTEIN)
else:
raise Exception("unknown feature type")
feat.set_features(data)
return feat