本文整理汇总了Python中shogun.Features.SparseRealFeatures.load方法的典型用法代码示例。如果您正苦于以下问题:Python SparseRealFeatures.load方法的具体用法?Python SparseRealFeatures.load怎么用?Python SparseRealFeatures.load使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Features.SparseRealFeatures
的用法示例。
在下文中一共展示了SparseRealFeatures.load方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: features_io_modular
# 需要导入模块: from shogun.Features import SparseRealFeatures [as 别名]
# 或者: from shogun.Features.SparseRealFeatures import load [as 别名]
def features_io_modular(fm_train_real, label_train_twoclass):
import numpy
from shogun.Features import SparseRealFeatures, RealFeatures, Labels
from shogun.Kernel import GaussianKernel
from shogun.IO import AsciiFile, BinaryFile, HDF5File
feats=SparseRealFeatures(fm_train_real)
feats2=SparseRealFeatures()
f=BinaryFile("fm_train_sparsereal.bin","w")
feats.save(f)
f=AsciiFile("fm_train_sparsereal.ascii","w")
feats.save(f)
f=BinaryFile("fm_train_sparsereal.bin")
feats2.load(f)
f=AsciiFile("fm_train_sparsereal.ascii")
feats2.load(f)
feats=RealFeatures(fm_train_real)
feats2=RealFeatures()
f=BinaryFile("fm_train_real.bin","w")
feats.save(f)
f=HDF5File("fm_train_real.h5","w", "/data/doubles")
feats.save(f)
f=AsciiFile("fm_train_real.ascii","w")
feats.save(f)
f=BinaryFile("fm_train_real.bin")
feats2.load(f)
#print "diff binary", numpy.max(numpy.abs(feats2.get_feature_matrix().flatten()-fm_train_real.flatten()))
f=AsciiFile("fm_train_real.ascii")
feats2.load(f)
#print "diff ascii", numpy.max(numpy.abs(feats2.get_feature_matrix().flatten()-fm_train_real.flatten()))
lab=Labels(numpy.array([1.0,2.0,3.0]))
lab2=Labels()
f=AsciiFile("label_train_twoclass.ascii","w")
lab.save(f)
f=BinaryFile("label_train_twoclass.bin","w")
lab.save(f)
f=HDF5File("label_train_real.h5","w", "/data/labels")
lab.save(f)
f=AsciiFile("label_train_twoclass.ascii")
lab2.load(f)
f=BinaryFile("label_train_twoclass.bin")
lab2.load(f)
f=HDF5File("fm_train_real.h5","r", "/data/doubles")
feats2.load(f)
#print feats2.get_feature_matrix()
f=HDF5File("label_train_real.h5","r", "/data/labels")
lab2.load(f)
#print lab2.get_labels()
#clean up
import os
for f in ['fm_train_sparsereal.bin','fm_train_sparsereal.ascii',
'fm_train_real.bin','fm_train_real.h5','fm_train_real.ascii',
'label_train_real.h5', 'label_train_twoclass.ascii','label_train_twoclass.bin']:
os.unlink(f)
return feats, feats2, lab, lab2