本文整理汇总了Python中sfepy.fem.ProblemDefinition类的典型用法代码示例。如果您正苦于以下问题:Python ProblemDefinition类的具体用法?Python ProblemDefinition怎么用?Python ProblemDefinition使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ProblemDefinition类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: save_only
def save_only( conf, save_names, problem = None ):
"""Save information available prior to setting equations and
solving them."""
if problem is None:
problem = ProblemDefinition.from_conf( conf, init_variables = False )
if save_names.regions is not None:
problem.save_regions( save_names.regions )
if save_names.field_meshes is not None:
problem.save_field_meshes( save_names.field_meshes )
if save_names.region_field_meshes is not None:
problem.save_region_field_meshes( save_names.region_field_meshes )
if save_names.ebc is not None:
if not hasattr( problem, 'variables' ):
problem.set_variables( conf.variables )
try:
ts = TimeStepper.from_conf( conf.ts )
ts.set_step( 0 )
except:
ts = None
try:
problem.variables.equation_mapping( conf.ebcs, conf.epbcs,
problem.domain.regions, ts,
conf.funmod )
except Exception, e:
output( 'cannot make equation mapping!' )
output( 'reason: %s' % e )
else:
problem.save_ebc( save_names.ebc )
示例2: vary_omega1_size
def vary_omega1_size( problem ):
"""Vary size of \Omega1. Saves also the regions into options['output_dir'].
Input:
problem: ProblemDefinition instance
Return:
a generator object:
1. creates new (modified) problem
2. yields the new (modified) problem and output container
3. use the output container for some logging
4. yields None (to signal next iteration to Application)
"""
from sfepy.fem import ProblemDefinition
from sfepy.solvers.ts import get_print_info
output.prefix = 'vary_omega1_size:'
diameters = nm.linspace( 0.1, 0.6, 7 ) + 0.001
ofn_trunk, output_format = problem.ofn_trunk, problem.output_format
output_dir = problem.output_dir
join = os.path.join
conf = problem.conf
cf = conf.get_raw( 'functions' )
n_digit, aux, d_format = get_print_info( len( diameters ) + 1 )
for ii, diameter in enumerate( diameters ):
output( 'iteration %d: diameter %3.2f' % (ii, diameter) )
cf['select_circ'] = (lambda coors, domain=None:
select_circ(coors[:,0], coors[:,1], 0, diameter),)
conf.edit('functions', cf)
problem = ProblemDefinition.from_conf( conf )
problem.save_regions( join( output_dir, ('regions_' + d_format) % ii ),
['Omega_1'] )
region = problem.domain.regions['Omega_1']
if not region.has_cells_if_can():
print region
raise ValueError( 'region %s has no cells!' % region.name )
ofn_trunk = ofn_trunk + '_' + (d_format % ii)
problem.setup_output(output_filename_trunk=ofn_trunk,
output_dir=output_dir,
output_format=output_format)
out = []
yield problem, out
out_problem, state = out[-1]
filename = join( output_dir,
('log_%s.txt' % d_format) % ii )
fd = open( filename, 'w' )
log_item = '$r(\Omega_1)$: %f\n' % diameter
fd.write( log_item )
fd.write( 'solution:\n' )
nm.savetxt(fd, state())
fd.close()
yield None
示例3: main
def main():
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.fem import ProblemDefinition
from sfepy.applications import solve_evolutionary
output.prefix = 'therel:'
required, other = get_standard_keywords()
conf = ProblemConf.from_file(__file__, required, other)
problem = ProblemDefinition.from_conf(conf, init_equations=False)
# Setup output directory according to options above.
problem.setup_default_output()
# First solve the stationary electric conduction problem.
problem.set_equations({'eq' : conf.equations['1']})
problem.time_update()
state_el = problem.solve()
problem.save_state(problem.get_output_name(suffix = 'el'), state_el)
# Then solve the evolutionary heat conduction problem, using state_el.
problem.set_equations({'eq' : conf.equations['2']})
phi_var = problem.get_variables()['phi_known']
phi_var.data_from_any(state_el())
solve_evolutionary(problem)
output('results saved in %s' % problem.get_output_name(suffix = '*'))
示例4: from_conf
def from_conf( conf, options ):
from sfepy.fem import ProblemDefinition
problem = ProblemDefinition.from_conf(conf, init_equations=False)
test = Test( problem = problem,
conf = conf, options = options )
return test
示例5: create_problem
def create_problem(filename):
from sfepy.fem import ProblemDefinition
problem = ProblemDefinition.from_conf_file(filename,
init_equations=False,
init_solvers=False)
return problem
示例6: main
def main():
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.fem import ProblemDefinition
from sfepy.base.plotutils import plt
parser = OptionParser(usage=usage, version='%prog')
parser.add_option('-n', '--no-plot',
action="store_true", dest='no_plot',
default=False, help=helps['no_plot'])
options, args = parser.parse_args()
required, other = get_standard_keywords()
# Use this file as the input file.
conf = ProblemConf.from_file( __file__, required, other )
# Create problem instance, but do not set equations.
problem = ProblemDefinition.from_conf( conf,
init_equations = False )
# Solve the problem. Output is ignored, results stored by using the
# step_hook.
u_t = solve_branch(problem, linear_tension)
u_c = solve_branch(problem, linear_compression)
# Get pressure load by calling linear_*() for each time step.
ts = problem.get_timestepper()
load_t = nm.array([linear_tension(ts, nm.array([[0.0]]), 'qp')['val']
for aux in ts.iter_from( 0 )],
dtype=nm.float64).squeeze()
load_c = nm.array([linear_compression(ts, nm.array([[0.0]]), 'qp')['val']
for aux in ts.iter_from( 0 )],
dtype=nm.float64).squeeze()
# Join the branches.
displacements = {}
for key in u_t.keys():
displacements[key] = nm.r_[u_c[key][::-1], u_t[key]]
load = nm.r_[load_c[::-1], load_t]
if plt is None:
print 'matplotlib cannot be imported, printing raw data!'
print displacements
print load
else:
legend = []
for key, val in displacements.iteritems():
plt.plot( load, val )
legend.append( key )
plt.legend( legend, loc = 2 )
plt.xlabel( 'tension [kPa]' )
plt.ylabel( 'displacement [mm]' )
plt.grid( True )
plt.gcf().savefig( 'pressure_displacement.png' )
if not options.no_plot:
plt.show()
示例7: from_conf
def from_conf(conf, options):
from sfepy.fem import ProblemDefinition
problem = ProblemDefinition.from_conf(conf)
problem.time_update()
test = Test(problem=problem, conf=conf, options=options)
return test
示例8: solve_direct
def solve_direct(conf, options, problem=None, step_hook=None,
post_process_hook=None, post_process_hook_final=None,
pre_process_hook=None, nls_status=None):
"""Generic (simple) problem solver."""
if problem is None:
is_eqs = not options.solve_not
problem = ProblemDefinition.from_conf(conf, init_equations=is_eqs)
problem.setup_default_output(conf, options)
if pre_process_hook is not None: # User pre_processing.
pre_process_hook(problem)
ofn_trunk = problem.ofn_trunk
save_names = Struct( ebc = None, regions = None,
regions_as_groups = None, field_meshes = None,
region_field_meshes = None )
if options.save_ebc:
save_names.ebc = ofn_trunk + '_ebc.vtk'
if options.save_regions:
save_names.regions = ofn_trunk + '_region'
if options.save_regions_as_groups:
save_names.regions_as_groups = ofn_trunk + '_regions'
if options.save_field_meshes:
save_names.field_meshes = ofn_trunk + '_field'
is_extra_save = False
for name, val in save_names.to_dict().iteritems():
if val is not None:
is_extra_save = True
break
if is_extra_save:
save_only( conf, save_names, problem=problem )
if options.solve_not:
return None, None, None
if hasattr( conf.options, 'ts' ):
##
# Time-dependent problem.
state = solve_evolutionary_op(problem, options,
step_hook=step_hook,
post_process_hook=post_process_hook,
nls_status=nls_status)
else:
##
# Stationary problem.
state = solve_stationary_op(problem, options,
post_process_hook=post_process_hook,
nls_status=nls_status)
if post_process_hook_final is not None: # User postprocessing.
post_process_hook_final(problem, state)
return problem, state
示例9: main
def main():
from sfepy import data_dir
parser = OptionParser(usage=usage, version="%prog")
parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
options, args = parser.parse_args()
mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
domain = Domain("domain", mesh)
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
eps = 1e-8 * (max_x - min_x)
omega = domain.create_region("Omega", "all")
gamma1 = domain.create_region("Gamma1", "nodes in x < %.10f" % (min_x + eps))
gamma2 = domain.create_region("Gamma2", "nodes in x > %.10f" % (max_x - eps))
field = Field("fu", nm.float64, "vector", omega, space="H1", poly_space_base="lagrange", approx_order=2)
u = FieldVariable("u", "unknown", field, mesh.dim)
v = FieldVariable("v", "test", field, mesh.dim, primary_var_name="u")
m = Material("m", lam=1.0, mu=1.0)
f = Material("f", val=[[0.02], [0.01]])
integral = Integral("i", order=3)
t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
eq = Equation("balance", t1 + t2)
eqs = Equations([eq])
fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})
bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = ProblemDefinition("elasticity", equations=eqs, nls=nls, ls=ls)
pb.save_regions_as_groups("regions")
pb.time_update(ebcs=Conditions([fix_u, shift_u]))
vec = pb.solve()
print nls_status
pb.save_state("linear_elasticity.vtk", vec)
if options.show:
view = Viewer("linear_elasticity.vtk")
view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
示例10: make_h1_projection_data
def make_h1_projection_data(target, eval_data):
"""
Project scalar data given by a material-like `eval_data()` function to a
scalar `target` field variable using the :math:`H^1` dot product.
"""
order = target.field.approx_order * 2
integral = Integral('i', order=order)
un = target.name
v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral,
target.field.region, v=v, **{un : target})
lhs2 = Term.new('dw_laplace(v, %s)' % un, integral,
target.field.region, v=v, **{un : target})
def _eval_data(ts, coors, mode, **kwargs):
if mode == 'qp':
val = eval_data(ts, coors, mode, 'val', **kwargs)
gval = eval_data(ts, coors, mode, 'grad', **kwargs)
return {'val' : val, 'gval' : gval}
m = Material('m', function=_eval_data)
rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
m=m, v=v)
rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region,
m=m, v=v)
eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)
pb.time_update()
# This sets the target variable with the projection solution.
pb.solve()
if nls_status.condition != 0:
output('H1 projection: solver did not converge!')
示例11: make_l2_projection
def make_l2_projection(target, source):
"""
Project `source` field variable to `target` field variable using
:math:`L^2` dot product.
"""
order = target.field.get_true_order()**2
integral = Integral('i', order=order)
un = target.name
v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
lhs = Term.new('dw_mass_scalar(v, %s)' % un, integral,
target.field.region, v=v, **{un : target})
def eval_variable(ts, coors, mode, **kwargs):
if mode == 'qp':
val = source.evaluate_at(coors)
val.shape = val.shape + (1,)
out = {'val' : val}
return out
m = Material('m', function=eval_variable)
rhs = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
m=m, v=v)
eq = Equation('projection', lhs - rhs)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)
pb.time_update()
# This sets the target variable with the projection solution.
pb.solve()
if nls_status.condition != 0:
output('L2 projection: solver did not converge!')
示例12: solve_stationary
def solve_stationary(conf, save_names=None, nls_status=None):
problem = ProblemDefinition.from_conf( conf )
problem.time_update( None )
if save_names is not None:
save_only( conf, save_names, problem = problem )
state = problem.solve( nls_status = nls_status )
return problem, state
示例13: main
def main():
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.fem import ProblemDefinition
from sfepy.base.plotutils import pylab
required, other = get_standard_keywords()
# Use this file as the input file.
conf = ProblemConf.from_file( __file__, required, other )
# Create problem instance, but do not set equations.
problem = ProblemDefinition.from_conf( conf,
init_equations = False )
options = Struct( output_filename_trunk = None )
# Solve the problem. Output is ignored, results stored by using the
# step_hook.
u_t = solve_branch( problem, options, linear_tension )
u_c = solve_branch( problem, options, linear_compression )
# Get pressure load by calling linear_*() for each time step.
ts = problem.get_timestepper()
load_t = nm.array( [linear_tension( ts, nm.array( [[0.0]] ) )['val']
for aux in ts.iter_from( 0 )],
dtype = nm.float64 ).squeeze()
load_c = nm.array( [linear_compression( ts, nm.array( [[0.0]] ) )['val']
for aux in ts.iter_from( 0 )],
dtype = nm.float64 ).squeeze()
# Join the branches.
displacements = {}
for key in u_t.keys():
displacements[key] = nm.r_[u_c[key][::-1], u_t[key]]
load = nm.r_[load_c[::-1], load_t]
if pylab is None:
print 'pylab cannot be imported, printing raw data!'
print displacements
print load
else:
legend = []
for key, val in displacements.iteritems():
pylab.plot( load, val )
legend.append( key )
pylab.legend( legend, loc = 2 )
pylab.xlabel( 'tension [kPa]' )
pylab.ylabel( 'displacement [mm]' )
pylab.grid( True )
pylab.gcf().savefig( 'pressure_displacement.png' )
pylab.show()
示例14: __init__
def __init__(self, conf, options, output_prefix, init_equations=True, **kwargs):
"""`kwargs` are passed to ProblemDefinition.from_conf()
Command-line options have precedence over conf.options."""
Application.__init__(self, conf, options, output_prefix)
self.setup_options()
is_eqs = init_equations
if hasattr(options, "solve_not") and options.solve_not:
is_eqs = False
self.problem = ProblemDefinition.from_conf(conf, init_equations=is_eqs, **kwargs)
self.setup_output_info(self.problem, self.options)
示例15: test_solving
def test_solving(self):
from sfepy.base.base import IndexedStruct
from sfepy.fem \
import FieldVariable, Material, ProblemDefinition, \
Function, Equation, Equations, Integral
from sfepy.fem.conditions import Conditions, EssentialBC
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
u = FieldVariable('u', 'unknown', self.field, self.dim)
v = FieldVariable('v', 'test', self.field, self.dim,
primary_var_name='u')
m = Material('m', lam=1.0, mu=1.0)
f = Material('f', val=[[0.02], [0.01]])
bc_fun = Function('fix_u_fun', fix_u_fun,
extra_args={'extra_arg' : 'hello'})
fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})
integral = Integral('i', order=3)
t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
integral, self.omega, m=m, v=v, u=u)
t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
## pb.save_regions_as_groups('regions')
pb.time_update(ebcs=Conditions([fix_u, shift_u]))
state = pb.solve()
name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
pb.save_state(name, state)
ok = nls_status.condition == 0
if not ok:
self.report('solver did not converge!')
_ok = state.has_ebc()
if not _ok:
self.report('EBCs violated!')
ok = ok and _ok
return ok