本文整理汇总了Python中sfepy.discrete.Problem类的典型用法代码示例。如果您正苦于以下问题:Python Problem类的具体用法?Python Problem怎么用?Python Problem使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Problem类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: assemble
def assemble(mtx_d):
m = Material('m', D=mtx_d, rho=density)
integral = Integral('i', order=2 * order)
t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
eq1 = Equation('stiffness', t1)
eq2 = Equation('mass', t2)
lhs_eqs = Equations([eq1, eq2])
pb = Problem('modal', equations=lhs_eqs)
pb.time_update()
n_rbm = dim * (dim + 1) / 2
pb.update_materials()
tmp = time.time()
# Assemble stiffness and mass matrices.
mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
mtx_m = mtx_k.copy()
mtx_m.data[:] = 0.0
mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)
return mtx_k, mtx_m
示例2: evalValAndDeriv
def evalValAndDeriv(D):
m = Material('m', D = D, rho = 2700.0)
integral = Integral('i', order=2)
t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
eq1 = Equation('stiffness', t1)
eq2 = Equation('mass', t2)
lhs_eqs = Equations([eq1, eq2])
pb = Problem('modal', equations = lhs_eqs)
pb.time_update()
n_rbm = dim * (dim + 1) / 2
pb.update_materials()
# Assemble stiffness and mass matrices.
mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
mtx_m = mtx_k.copy()
mtx_m.data[:] = 0.0
mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)
eigs0, evecs0 = scipy.sparse.linalg.eigsh(mtx_k, k = 10, M = mtx_m, which = 'SM')
eigs = eigs0[3:]
evecs = evecs0[:, 3:]
dydmu = numpy.array([evecs[:, i].T.dot(dKdmu.dot(evecs[:, i])) for i in range(evecs.shape[1])])
dydlambda = numpy.array([evecs[:, i].T.dot(dKdlambda.dot(evecs[:, i])) for i in range(evecs.shape[1])])
return eigs, dydmu, dydlambda
示例3: solve_problem
def solve_problem(shape, dims, young, poisson, force, transform=None):
domain = make_domain(dims[:2], shape, transform=transform)
omega = domain.regions['Omega']
gamma1 = domain.regions['Gamma1']
gamma2 = domain.regions['Gamma2']
field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1,
poly_space_base='shell10x')
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
thickness = dims[2]
if transform is None:
pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1]
elif transform == 'bend':
pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1]
elif transform == 'twist':
pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1]
m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson),
values={'.drill' : 1e-7})
load = Material('load', values={'.val' : pload})
aux = Integral('i', order=3)
qp_coors, qp_weights = aux.get_qp('3_8')
qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5)
qp_weights *= thickness
integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom')
t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)',
integral, omega, m=m, v=v, u=u)
t2 = Term.new('dw_point_load(load.val, v)',
integral, gamma2, load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity with shell10x', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([fix_u]))
state = pb.solve()
return pb, state, u, gamma2
示例4: test_solving
def test_solving(self):
from sfepy.base.base import IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Problem, Function,
Equation, Equations, Integral)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.mechanics.matcoefs import stiffness_from_lame
u = FieldVariable('u', 'unknown', self.field)
v = FieldVariable('v', 'test', self.field, primary_var_name='u')
m = Material('m', D=stiffness_from_lame(self.dim, 1.0, 1.0))
f = Material('f', val=[[0.02], [0.01]])
bc_fun = Function('fix_u_fun', fix_u_fun,
extra_args={'extra_arg' : 'hello'})
fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})
integral = Integral('i', order=3)
t1 = Term.new('dw_lin_elastic(m.D, v, u)',
integral, self.omega, m=m, v=v, u=u)
t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs)
## pb.save_regions_as_groups('regions')
pb.set_bcs(ebcs=Conditions([fix_u, shift_u]))
pb.set_solver(nls)
state = pb.solve()
name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
pb.save_state(name, state)
ok = nls_status.condition == 0
if not ok:
self.report('solver did not converge!')
_ok = state.has_ebc()
if not _ok:
self.report('EBCs violated!')
ok = ok and _ok
return ok
示例5: main
def main():
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
output.prefix = "therel:"
required, other = get_standard_keywords()
conf = ProblemConf.from_file(__file__, required, other)
problem = Problem.from_conf(conf, init_equations=False)
# Setup output directory according to options above.
problem.setup_default_output()
# First solve the stationary electric conduction problem.
problem.set_equations({"eq": conf.equations["1"]})
problem.time_update()
state_el = problem.solve()
problem.save_state(problem.get_output_name(suffix="el"), state_el)
# Then solve the evolutionary heat conduction problem, using state_el.
problem.set_equations({"eq": conf.equations["2"]})
phi_var = problem.get_variables()["phi_known"]
phi_var.set_data(state_el())
time_solver = problem.get_time_solver()
time_solver()
output("results saved in %s" % problem.get_output_name(suffix="*"))
示例6: main
def main():
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
output.prefix = 'therel:'
required, other = get_standard_keywords()
conf = ProblemConf.from_file(__file__, required, other)
problem = Problem.from_conf(conf, init_equations=False)
# Setup output directory according to options above.
problem.setup_default_output()
# First solve the stationary electric conduction problem.
problem.set_equations({'eq' : conf.equations['1']})
state_el = problem.solve()
problem.save_state(problem.get_output_name(suffix = 'el'), state_el)
# Then solve the evolutionary heat conduction problem, using state_el.
problem.set_equations({'eq' : conf.equations['2']})
phi_var = problem.get_variables()['phi_known']
phi_var.set_data(state_el())
problem.solve()
output('results saved in %s' % problem.get_output_name(suffix = '*'))
示例7: from_conf
def from_conf(conf, options):
from sfepy.discrete import Problem
problem = Problem.from_conf(conf, init_equations=False)
test = Test(problem=problem,
conf=conf, options=options)
return test
示例8: main
def main():
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
parser = OptionParser(usage=usage, version='%prog')
parser.add_option('-n', '--no-plot',
action="store_true", dest='no_plot',
default=False, help=helps['no_plot'])
options, args = parser.parse_args()
required, other = get_standard_keywords()
# Use this file as the input file.
conf = ProblemConf.from_file(__file__, required, other)
# Create problem instance, but do not set equations.
problem = Problem.from_conf(conf, init_equations=False)
# Solve the problem. Output is ignored, results stored by using the
# step_hook.
u_t = solve_branch(problem, linear_tension)
u_c = solve_branch(problem, linear_compression)
# Get pressure load by calling linear_*() for each time step.
ts = problem.get_timestepper()
load_t = nm.array([linear_tension(ts, nm.array([[0.0]]), 'qp')['val']
for aux in ts.iter_from(0)],
dtype=nm.float64).squeeze()
load_c = nm.array([linear_compression(ts, nm.array([[0.0]]), 'qp')['val']
for aux in ts.iter_from(0)],
dtype=nm.float64).squeeze()
# Join the branches.
displacements = {}
for key in u_t.keys():
displacements[key] = nm.r_[u_c[key][::-1], u_t[key]]
load = nm.r_[load_c[::-1], load_t]
if plt is None:
output('matplotlib cannot be imported, printing raw data!')
output(displacements)
output(load)
else:
legend = []
for key, val in six.iteritems(displacements):
plt.plot(load, val)
legend.append(key)
plt.legend(legend, loc = 2)
plt.xlabel('tension [kPa]')
plt.ylabel('displacement [mm]')
plt.grid(True)
plt.gcf().savefig('pressure_displacement.png')
if not options.no_plot:
plt.show()
示例9: vary_omega1_size
def vary_omega1_size( problem ):
"""Vary size of \Omega1. Saves also the regions into options['output_dir'].
Input:
problem: Problem instance
Return:
a generator object:
1. creates new (modified) problem
2. yields the new (modified) problem and output container
3. use the output container for some logging
4. yields None (to signal next iteration to Application)
"""
from sfepy.discrete import Problem
from sfepy.solvers.ts import get_print_info
output.prefix = 'vary_omega1_size:'
diameters = nm.linspace( 0.1, 0.6, 7 ) + 0.001
ofn_trunk, output_format = problem.ofn_trunk, problem.output_format
output_dir = problem.output_dir
join = os.path.join
conf = problem.conf
cf = conf.get_raw( 'functions' )
n_digit, aux, d_format = get_print_info( len( diameters ) + 1 )
for ii, diameter in enumerate( diameters ):
output( 'iteration %d: diameter %3.2f' % (ii, diameter) )
cf['select_circ'] = (lambda coors, domain=None:
select_circ(coors[:,0], coors[:,1], 0, diameter),)
conf.edit('functions', cf)
problem = Problem.from_conf(conf)
problem.save_regions( join( output_dir, ('regions_' + d_format) % ii ),
['Omega_1'] )
region = problem.domain.regions['Omega_1']
if not region.has_cells():
raise ValueError('region %s has no cells!' % region.name)
ofn_trunk = ofn_trunk + '_' + (d_format % ii)
problem.setup_output(output_filename_trunk=ofn_trunk,
output_dir=output_dir,
output_format=output_format)
out = []
yield problem, out
out_problem, state = out[-1]
filename = join( output_dir,
('log_%s.txt' % d_format) % ii )
fd = open( filename, 'w' )
log_item = '$r(\Omega_1)$: %f\n' % diameter
fd.write( log_item )
fd.write( 'solution:\n' )
nm.savetxt(fd, state())
fd.close()
yield None
示例10: from_conf
def from_conf(conf, options):
from sfepy.discrete import Problem
problem = Problem.from_conf(conf)
problem.time_update()
test = Test(problem=problem, conf=conf, options=options)
return test
示例11: assemble_matrices
def assemble_matrices(define, mod, pars, set_wave_dir, options):
"""
Assemble the blocks of dispersion eigenvalue problem matrices.
"""
define_problem = functools.partial(define,
filename_mesh=options.mesh_filename,
pars=pars,
approx_order=options.order,
refinement_level=options.refine,
solver_conf=options.solver_conf,
plane=options.plane,
post_process=options.post_process)
conf = ProblemConf.from_dict(define_problem(), mod)
pb = Problem.from_conf(conf)
pb.dispersion_options = options
pb.set_output_dir(options.output_dir)
dim = pb.domain.shape.dim
# Set the normalized wave vector direction to the material(s).
wdir = nm.asarray(options.wave_dir[:dim], dtype=nm.float64)
wdir = wdir / nm.linalg.norm(wdir)
set_wave_dir(pb, wdir)
bbox = pb.domain.mesh.get_bounding_box()
size = (bbox[1] - bbox[0]).max()
scaling0 = apply_unit_multipliers([1.0], ['length'],
options.unit_multipliers)[0]
scaling = scaling0
if options.mesh_size is not None:
scaling *= options.mesh_size / size
output('scaling factor of periodic cell mesh coordinates:', scaling)
output('new mesh size with applied unit multipliers:', scaling * size)
pb.domain.mesh.coors[:] *= scaling
pb.set_mesh_coors(pb.domain.mesh.coors, update_fields=True)
bzone = 2.0 * nm.pi / (scaling * size)
output('1. Brillouin zone size:', bzone * scaling0)
output('1. Brillouin zone size with applied unit multipliers:', bzone)
pb.time_update()
pb.update_materials()
# Assemble the matrices.
mtxs = {}
for key, eq in pb.equations.iteritems():
mtxs[key] = mtx = pb.mtx_a.copy()
mtx = eq.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx)
mtx.eliminate_zeros()
output_array_stats(mtx.data, 'nonzeros in %s' % key)
output('symmetry checks:')
output('%s - %s^T:' % (key, key), max_diff_csr(mtx, mtx.T))
output('%s - %s^H:' % (key, key), max_diff_csr(mtx, mtx.H))
return pb, wdir, bzone, mtxs
示例12: test_stokes_slip_bc
def test_stokes_slip_bc(self):
import scipy.sparse as sp
from sfepy.base.conf import ProblemConf
from sfepy.discrete import Problem
import examples.navier_stokes.stokes_slip_bc as ssb
conf = ProblemConf.from_module(ssb)
pb = Problem.from_conf(conf, init_solvers=False)
pb.time_update()
variables = pb.get_variables()
adi = variables.adi
lcdi = variables.lcdi
mtx = variables.mtx_lcbc
ok = adi.var_names == lcdi.var_names
self.report('same adi-lcdi ordering:', ok)
ublock = mtx[adi.indx['u']]
ir, ic = ublock.nonzero()
ir += adi.indx['u'].start
i0, i1 = adi.indx['u'].start, adi.indx['u'].stop
_ok0 = (i0 <= ir).all() and (ir < i1).all()
self.report('u block rows in [%d %d[: %s' % (i0, i1, _ok0))
i0, i1 = lcdi.indx['u'].start, lcdi.indx['u'].stop
_ok1 = (i0 <= ic).all() and (ic < i1).all()
self.report('u block cols in [%d %d[: %s' % (i0, i1, _ok1))
ok = ok and _ok0 and _ok1
pblock = mtx[adi.indx['p']]
ir, ic, iv = sp.find(pblock)
ir += adi.indx['p'].start
i0, i1 = adi.indx['p'].start, adi.indx['p'].stop
_ok0 = (i0 <= ir).all() and (ir < i1).all()
self.report('p block rows in [%d %d[: %s' % (i0, i1, _ok0))
i0, i1 = lcdi.indx['p'].start, lcdi.indx['p'].stop
_ok1 = (i0 <= ic).all() and (ic < i1).all()
self.report('p block cols in [%d %d[: %s' % (i0, i1, _ok1))
ok = ok and _ok0 and _ok1
_ok0 = (len(ir) == adi.n_dof['p'])
self.report('p block size correct:', _ok0)
_ok1 = ((ir - adi.indx['p'].start) == (ic - lcdi.indx['p'].start)).all()
self.report('p block diagonal:', _ok1)
_ok2 = (iv == 1.0).all()
self.report('p block identity:', _ok2)
ok = ok and _ok0 and _ok1 and _ok2
return ok
示例13: make_h1_projection_data
def make_h1_projection_data(target, eval_data):
"""
Project scalar data given by a material-like `eval_data()` function to a
scalar `target` field variable using the :math:`H^1` dot product.
"""
order = target.field.approx_order * 2
integral = Integral('i', order=order)
un = target.name
v = FieldVariable('v', 'test', target.field, primary_var_name=un)
lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral,
target.field.region, v=v, **{un : target})
lhs2 = Term.new('dw_laplace(v, %s)' % un, integral,
target.field.region, v=v, **{un : target})
def _eval_data(ts, coors, mode, **kwargs):
if mode == 'qp':
val = eval_data(ts, coors, mode, 'val', **kwargs)
gval = eval_data(ts, coors, mode, 'grad', **kwargs)
return {'val' : val, 'gval' : gval}
m = Material('m', function=_eval_data)
rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
m=m, v=v)
rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region,
m=m, v=v)
eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('aux', equations=eqs, nls=nls, ls=ls)
pb.time_update()
# This sets the target variable with the projection solution.
pb.solve()
if nls_status.condition != 0:
output('H1 projection: solver did not converge!')
示例14: main
def main():
from sfepy import data_dir
parser = OptionParser(usage=usage, version="%prog")
parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
options, args = parser.parse_args()
mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
domain = Domain("domain", mesh)
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
eps = 1e-8 * (max_x - min_x)
omega = domain.create_region("Omega", "all")
gamma1 = domain.create_region("Gamma1", "vertices in x < %.10f" % (min_x + eps), "facet")
gamma2 = domain.create_region("Gamma2", "vertices in x > %.10f" % (max_x - eps), "facet")
field = Field.from_args("fu", nm.float64, "vector", omega, approx_order=2)
u = FieldVariable("u", "unknown", field)
v = FieldVariable("v", "test", field, primary_var_name="u")
m = Material("m", lam=1.0, mu=1.0)
f = Material("f", val=[[0.02], [0.01]])
integral = Integral("i", order=3)
t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
eq = Equation("balance", t1 + t2)
eqs = Equations([eq])
fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})
bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem("elasticity", equations=eqs, nls=nls, ls=ls)
pb.save_regions_as_groups("regions")
pb.time_update(ebcs=Conditions([fix_u, shift_u]))
vec = pb.solve()
print nls_status
pb.save_state("linear_elasticity.vtk", vec)
if options.show:
view = Viewer("linear_elasticity.vtk")
view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
示例15: run
def run(domain, order):
omega = domain.create_region('Omega', 'all')
bbox = domain.get_mesh_bounding_box()
min_x, max_x = bbox[:, 0]
min_y, max_y = bbox[:, 1]
eps = 1e-8 * (max_x - min_x)
gamma1 = domain.create_region('Gamma1',
'vertices in (x < %.10f)' % (min_x + eps),
'facet')
gamma2 = domain.create_region('Gamma2',
'vertices in (x > %.10f)' % (max_x - eps),
'facet')
gamma3 = domain.create_region('Gamma3',
'vertices in y < %.10f' % (min_y + eps),
'facet')
gamma4 = domain.create_region('Gamma4',
'vertices in y > %.10f' % (max_y - eps),
'facet')
field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
integral = Integral('i', order=2*order)
t1 = Term.new('dw_laplace(v, u)',
integral, omega, v=v, u=u)
eq = Equation('eq', t1)
eqs = Equations([eq])
fix1 = EssentialBC('fix1', gamma1, {'u.0' : 0.4})
fix2 = EssentialBC('fix2', gamma2, {'u.0' : 0.0})
def get_shift(ts, coors, region):
return nm.ones_like(coors[:, 0])
dof_map_fun = Function('dof_map_fun', per.match_x_line)
shift_fun = Function('shift_fun', get_shift)
sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0' : 'u.0'},
dof_map_fun, 'shifted_periodic',
arguments=(shift_fun,))
ls = ScipyDirect({})
pb = Problem('laplace', equations=eqs, auto_solvers=None)
pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))
ev = pb.get_evaluator()
nls = Newton({}, lin_solver=ls,
fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)
pb.set_solver(nls)
state = pb.solve()
return pb, state