当前位置: 首页>>代码示例>>Python>>正文


Python Searcher.search方法代码示例

本文整理汇总了Python中searcher.Searcher.search方法的典型用法代码示例。如果您正苦于以下问题:Python Searcher.search方法的具体用法?Python Searcher.search怎么用?Python Searcher.search使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在searcher.Searcher的用法示例。


在下文中一共展示了Searcher.search方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: scrape

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
 def scrape(self):
     self.scrape_results = defaultdict(lambda: defaultdict(list))
     for category_of_document_path in self.qd_dict:
         for file in self.qd_dict[category_of_document_path]:
             s = Searcher(category_of_document_path, file, self.qd_dict)
             s.search()
             self.scrape_results[os.path.split(category_of_document_path)[1]][os.path.splitext(file)[0]] = s.results
     print len(self.scrape_results)
开发者ID:blindidiot91,项目名称:ASTM-Mapping,代码行数:10,代码来源:scraper.py

示例2: SearcherTests

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
class SearcherTests(unittest.TestCase):
    """
    Test case for SearchEngine class.
    """

    def setUp(self):
        """
        Setup search engine that will be subjected to the tests.
        """
        self.twitter = Twitter(CUR_DIR + "/test_crossfit.tweets", CUR_DIR + "/test_stop_words.txt")
        self.twitter.load_tweets_and_build_index()

        self.searcher = Searcher(self.twitter.tweets, self.twitter.stop_words)

    def test_indexed_doc_count(self):

        self.assertEqual(self.searcher.count(), 10)

    def test_existent_term_search(self):
        """
        Test if search is correctly performed.
        """
        results = self.searcher.search("coach")
        expected_results = 3

        self.assertEqual(results[0].indexable.docid, expected_results)

    def test_non_existent_term_search(self):
        """
        Test if search is correctly performed.
        """

        expected_results = []
        results = self.searcher.search("asdasdasdas")

        self.assertListEqual(results, expected_results)

    def test_search_result_limit(self):
        """
        Test if search results can be limited.
        """
        results = self.searcher.search("crossfit", 1)
        expected_results = 6

        self.assertEqual(results[0].indexable.docid, expected_results)
开发者ID:UIKit0,项目名称:simple-search-engine,代码行数:47,代码来源:test_search.py

示例3: load

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
 def load(self):
     if os.path.exists(self.file_path):
         f = open(self.file_path, "r")
         conn_map = pickle.load(f)
         f.close()
         return conn_map
     conn_maps = {}
     for name, conn in self.connections.items():
         conn_map = {}
         searcher = Searcher(conn)
         searcher.search()
         conn_map["tables"] = searcher.tables
         conn_map["connection"] = searcher.connection
         conn_maps[name] = conn_map
     f = open(self.file_path, "w")
     pickle.dump(conn_maps, f)
     f.close()
     return conn_maps
开发者ID:pyohei,项目名称:sandbox-piyopiyo,代码行数:20,代码来源:loader.py

示例4: MainWindow

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
class MainWindow(QtGui.QMainWindow, Ui_MainWindow):
       
    def __init__(self, parent = None):
        super(MainWindow, self).__init__(parent)
                
        self.setupUi(self)

        self.setWindowTitle("Search My Workspace")

        # List to display search results
        self.searchResultsModel = SearchResultsModel()
        self.listView_result.setModel(self.searchResultsModel)

        searchResultsDelegate = SearchResultsDelegate(self.listView_result)
        self.listView_result.setItemDelegate(searchResultsDelegate);

        # Tree to display facets
        self.facetModel = FacetModel()
        self.treeView_facet.setModel(self.facetModel)
        self.facetModel.modelReset.connect(self.treeView_facet.expandAll)

        # searcher
        self.searcher = Searcher()
        self.searcher.searchDone.connect(self.searchDone)

        # signal slots
        self.createConnections()                

    ''' connect signal/slot pairs '''
    def createConnections(self):
        self.pushButton_search.clicked.connect(self.searchResultsModel.clearMyModel)
        self.pushButton_search.clicked.connect(self.facetModel.clearMyModel)
        self.pushButton_search.clicked.connect(self.search)

    def search(self):
        query = self.lineEdit_search.text()
        self.searcher.search(query)

    def searchDone(self):
        self.searchResultsModel.handleSearchResults(self.searcher.getDocs())
        self.facetModel.handleSearchResults(self.searcher.getFacets())
        self.label_searchResult.setText('About {0} search results for [{1}]'.format(self.searcher.getHits(), self.searcher.getQuery()))
开发者ID:zhongzhu,项目名称:exercise,代码行数:44,代码来源:mainwindow.py

示例5: MainWindow

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
class MainWindow(QtGui.QMainWindow, Ui_MainWindow):

    def __init__(self, parent = None):
        super(MainWindow, self).__init__(parent)

        self.setupUi(self)

        self.searchResultsView = SearchResultsView(self.listView_result)
        self.searchResultsView.viewDetailedContent.connect(self.showDetailedContent)

        self.facetView = FacetView(self.treeView_facet)
        self.facetView.facetOptionChanged.connect(self.search)

        # searcher
        self.searcher = Searcher()
        self.searcher.searchDone.connect(self.searchDone)

        self.createConnections()

    def createConnections(self):
        self.pushButton_search.clicked.connect(self.searchResultsView.clear)
        self.pushButton_search.clicked.connect(self.facetView.clear)
        self.pushButton_search.clicked.connect(self.search)

    def search(self):
        query = self.lineEdit_search.text()
        options = self.facetView.getFacetSearchOptions()
        self.searcher.search(query, options)

    def showDetailedContent(self, fileLocation):
        myviewer = viewer.viewerSimpleFactory(fileLocation, self)
        myviewer.showDetailedContent()

    @QtCore.Slot(int)
    def searchDone(self, searchResultCount):
        if searchResultCount > 0:
            self.searchResultsView.handleSearchResults(self.searcher.getDocs(), self.searcher.getHighlighting())
            self.facetView.handleSearchResults(self.searcher.getFacets())

        self.label_searchResult.setText('About {0} search results for [{1}]'.format(searchResultCount, self.searcher.getQuery()))
开发者ID:zhongzhu,项目名称:searchmyworkspace,代码行数:42,代码来源:mainwindow.py

示例6: Match

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
def Match(queryname,k):
    folder="static"
    queryImage = cv2.imread(os.path.join(folder,queryname))
    desc = RGBHistogram([8, 8, 8])
    # load the index perform the search
    #index = cPickle.loads(open("index.txt").read())
    d = min(division(queryImage),7)
    folder='indexIMG'
    index = shelve.open(os.path.join(folder,'f%d.shelve'%d))
    searcher = Searcher(index)
    
    queryFeatures = desc.describe(queryImage)
    results = searcher.search(queryFeatures)
    l=len(results)
    lastRes=results[:min(k,l)]
    return lastRes
开发者ID:LeiHaoruo,项目名称:BookSearchEngine,代码行数:18,代码来源:cbir.py

示例7: search

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
    def search(img):

        # initialize the image descriptor
        cd = ColorDescriptor((8, 12, 3))

        # load the query image and describe it
        #query = cv2.imread(args["query"])
        #query = cv2.imread("queries/2.png")

        features = cd.describe(img)

        # perform the search

        searcher = Searcher("feature.csv")

        results = searcher.search(features)
        return results
开发者ID:saucewan,项目名称:imageSearch,代码行数:19,代码来源:search.py

示例8: main_search

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
	def main_search(self):
		cd = ColorDescriptor((8, 12, 3))

		# load the query image and describe it
		query = cv2.imread('test_dataset/'+self.name)
		features = cd.describe(query)

		# perform the search
		searcher = Searcher(self.file_path)
		results = searcher.search(features)

		# display the query
		cv2.imshow("Query",query)

		# loop over the results
		for (score, resultID) in results:
			# load the result image and display it
			result = cv2.imread(self.data_path + "/" + resultID)
			r=300.0/result.shape[1]
			dim=(300,int(result.shape[0]*r))
			resized = cv2.resize(result, dim, interpolation = cv2.INTER_AREA)
			cv2.imshow("RESULT", resized)
			cv2.waitKey(0)
			cv2.destroyAllWindows()	
开发者ID:farhan0581,项目名称:CBIR,代码行数:26,代码来源:search.py

示例9: mask

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
ap.add_argument("-r", "--result-path", required = True,
	help = "Path to the result path")
ap.add_argument("-m", "--mask", required = True,
	help = "Path to image mask (same size as images) to break into a grid")
ap.add_argument("-g", "--gridsize", required = True,
	help = "Dimension for a single width/height for the square grid mask")
args = vars(ap.parse_args())
 
# initialize the image descriptor
cd = ColorDescriptor((8, 12, 3),args["mask"],args["gridsize"])

# load the query image and describe it
query = cv2.imread(args["query"])
features = cd.describe(query)
 
# perform the search
searcher = Searcher(args["index"])
scores,image_names = searcher.search(features)
 
# display the query
cv2.imshow("Query", query)
 
# loop over the results
for x in range(0,len(scores)):
        resultID = image_names[x]
        print "Similar image %s is %s, score: %s" %(x,resultID,scores[x])
	# load the result image and display it
	result = cv2.imread(args["result_path"] + "/" + resultID)
	cv2.imshow("Result", result)
	cv2.waitKey(0)
开发者ID:vsoch,项目名称:imageSearch,代码行数:32,代码来源:search.py

示例10: Twitter

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
class Twitter(object):
    """Class representing a inventory of books.

    Args:
      tweets_filename (str): File name containing tweets.
      stop_words_filename (str): File name containing stop words.

    Attributes:
      teets(list): List of original tweets.
      stop_words (list): List of stop words.
      indexer (Indexer): Object responsible for indexing tweets.
      searcher (Searcher): Object responsible for searching tweets.

    """

    _TWEET_META_TEXT_INDEX = 0
    _TWEET_META_SCREEN_NAME_INDEX = 1

    _NO_RESULTS_MESSAGE = "Sorry, no results."

    def __init__(self, tweets_filename, stop_words_filename):
        self.tweets             = []
        self.tweets_filename    = tweets_filename
        self.stop_words         = self.__load_stop_words(stop_words_filename)
        self.indexer            = Indexer(self.stop_words)
        self.searcher           = []

    @timed
    def load_tweets(self):
        """Load tweets from a file name.

        This method leverages the iterable behavior of File objects
        that automatically uses buffered IO and memory management handling
        effectively large files.

        """
        docid = 0
        processor = TwitterDataPreprocessor()
        with open(self.tweets_filename) as catalog:
            for entry in catalog:
                # preprocessing
                p_entry = processor.preprocess(entry)

                text = p_entry[self._TWEET_META_TEXT_INDEX].strip()
                screen_name = ''
                if len(p_entry) > 1:
                    screen_name = p_entry[self._TWEET_META_SCREEN_NAME_INDEX].strip()
                
                indexable_data = text + ' ' + screen_name
                original_data = entry

                tweet = Tweet(docid, indexable_data, original_data)
                self.tweets.append(tweet)
                docid += 1

    @timed
    def load_tweets_and_build_index(self):
        """Load tweets from a file name, build index, compute ranking and save them all.

        """
        self.load_tweets()
        self.indexer.build_and_save(self.tweets)

    @timed
    def load_tweets_and_load_index(self):
        """Load tweets from a file name and load index from a file name.

        """
        self.load_tweets()
        self.searcher = Searcher(self.tweets, self.stop_words)

    @timed
    def search_tweets(self, query, n_results=10):
        """Search tweets according to provided query of terms.

        The query is executed against the indexed tweets, and a list of tweets
        compatible with the provided terms is return along with their tf-idf
        score.

        Args:
          query (str): Query string with one or more terms.
          n_results (int): Desired number of results.

        Returns:
          list of IndexableResult: List containing tweets and their respective
            tf-idf scores.

        """
        result = ''
        if len(query) > 0:
            result = self.searcher.search(query, n_results)

        if len(result) > 0:
            return "{:,}".format(self.searcher.search_count()) \
                + " results.\n\n" \
                + "".join([str(indexable) for indexable in result])
        return self._NO_RESULTS_MESSAGE        

    def tweets_count(self):
        """Return number of loaded tweets.
#.........这里部分代码省略.........
开发者ID:UIKit0,项目名称:simple-search-engine,代码行数:103,代码来源:twitter.py

示例11: matcher

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
def matcher(Dataset,Query):
    dataset='uploads'

    query_image=Query
    
    index='index.csv'
    
    res=0
    res1=0

    cd=descriptor((8,12,3))

    query=cv2.imread(query_image)

    gray=cv2.cvtColor(query,cv2.COLOR_BGR2GRAY)
    cv2.imwrite('grey.jpg',gray)

    query_grey=cv2.imread('grey.jpg')


    features=cd.describe(query)

    features_grey=cd.describe(query_grey)

    searcher=Searcher(index)
    results=searcher.search(features)
    results_grey=searcher.search(features_grey)


    #cv2.imshow("Query",query)

    for (score,resultID) in results:
        result=cv2.imread(dataset+resultID)
        #m=match(query_image,dataset+resultID)
        #cv2.imshow("Result",result)
        print(resultID)
        if score < 7.95:
            print(score)
            t=math.floor(score)
            res=100-t
            print(100-t)
        else:
            print(score)
            t=math.floor(score)
            res=t
            print(t+t)
            #cv2.waitKey(0)


    print("---------------grey---------------")
    for (score,resultID) in results_grey:
        result=cv2.imread(dataset+resultID)
        #cv2.imshow("Result",result)
        print(resultID)
        if score < 7.95:
            print(score)
            t=math.floor(score)
            res1=100-t
            print(100-t)
        else:
            print(score)
            t=math.floor(score)
            res1=t
            print(t+t)
            #cv2.waitKey(0)
    return (res,res1) 
开发者ID:akshaynathr,项目名称:ImageSimilarityComparison,代码行数:68,代码来源:search.py

示例12: RGBHistogram

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
# load the query image and show it
queryImage = cv2.imread(args["query"])
cv2.imshow("Query", queryImage)
print "query: %s" % (args["query"])

# describe the query in the same way that we did in
# index.py -- a 3D RGB histogram with 8 bins per
# channel
desc = RGBHistogram([8, 8, 8])
queryFeatures = desc.describe(queryImage)

# load the index perform the search
index = cPickle.loads(open(args["index"]).read())
searcher = Searcher(index)
results = searcher.search(queryFeatures)

# initialize the two montages to display our results --
# we have a total of 25 images in the index, but let's only
# display the top 10 results; 5 images per montage, with
# images that are 400x166 pixels
# montageA = np.zeros((166 * 5, 400, 3), dtype = "uint8")
# montageB = np.zeros((166 * 5, 400, 3), dtype = "uint8")

# montageA = np.zeros((40 * 5, 100, 3), dtype = "uint8")
# montageB = np.zeros((40 * 5, 100, 3), dtype = "uint8")

# loop over the top ten results
for j in xrange(0, 10):
    # grab the result (we are using row-major order) and
    # load the result image
开发者ID:riteshpradhan,项目名称:image-search,代码行数:32,代码来源:cbir.py

示例13: GCHDescriptor

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
	queryDesc = GCHDescriptor((9, 12, 4))
	indexFilepath = "indexes/gchindex.csv"
elif(args["method"].upper() == "LCH"):
	queryDesc = LCHDescriptor((9, 12, 3))
	indexFilepath = "indexes/lchindex.csv"
else:
	sys.exit("\nMetodo descritor invalido!\n")

# carrega a imagem de consulta em memoria e aplica o descritor
query = cv2.imread(args["query"])
queryFeatures = queryDesc.describe(query)

# inicializa um objeto que ira' fazer a comparacao da imagem de consulta com o banco de imagens
searcher = Searcher(indexFilepath)
# realiza a consulta das n-imagens mais semelhantes 
results = searcher.search(queryFeatures, int(args["limit"]), args["distance"])

############################## DESCOMENTAR AQUI PRA MANDAR #####################################################
# percorre o vetor com as imagens mais semelhantes e imprime na saida padrao em ordem decrescente de similaridade
#for (score, imageID) in results:
#	print imageID
################################################################################################################
t2 = time.time()
print "Tempo: %.2f s" % (t2 - t1)
############################## COMENTAR DAQUI PARA BAIXO SE DESCOMENTAR EM CIMA ######################################################

r = 800.0 / query.shape[1]
dim = (800, int(query.shape[0] * r))

resized = cv2.resize(query, dim, interpolation = cv2.INTER_AREA)
cv2.imshow("Query", resized)
开发者ID:cretto,项目名称:Trabalho-Final-PI,代码行数:33,代码来源:corel10k.py

示例14: gen_path

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
    
    '''
    used default _date field to generate the file path where the doc is stored
    '''
    def gen_path(self, doc):
        if not doc.has_key('_date'):
            doc['_date'] = datetime.now(tz.tzlocal())
        dt = doc['_date']
        return os.path.sep.join([self.dir, str(dt.year), str(dt.month), \
            str(dt.day) + '.sen'])

if __name__ == '__main__':
    defi = DefinitionIndexer('/data/personalSite/app/web/static/definition')
    defs = Searcher(defi)
    with defs.open() as searcher:
        r = defs.search(searcher, 'content', u'developing')
        found = r.scored_length()
        print found
        for rr in r:
            print rr['id']
    '''
    si = SenIndexer('sen')
    di = DocIndexer('doc')
    ss = Searcher(si)
    ds = Searcher(di)

    di.doc_op({
        'content': u'doc',
        'tags': [u't'],
        'categories': [],
        'comments': u'docc',
开发者ID:jzbjyb,项目名称:PersonalSite,代码行数:33,代码来源:indexer.py

示例15: vars

# 需要导入模块: from searcher import Searcher [as 别名]
# 或者: from searcher.Searcher import search [as 别名]
import argparse
import cv2
import time
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--index", default='index.csv',
                help="Path to where the computed index will be stored")
ap.add_argument("-l", "--limit", default=10,
                help="Query result limit")
ap.add_argument("-d", "--dist", default='euclidean',
                help="Distance model")
ap.add_argument("-q", "--query", required=True,
                help="Path to the query image")
args = vars(ap.parse_args())

# initialize the image descriptor
cd = ColorDescriptor((8, 12, 3))

# load the query image and describe it
query = cv2.imread(args["query"])
features = cd.describe(query)

# perform the search
searcher = Searcher(args["index"])
results = searcher.search(features, int(args["limit"]), args["dist"])

# loop over the results
for (score, resultID) in results:
    # load the result image and display it
    print resultID
开发者ID:silasxue,项目名称:CBIR-Search-Engine,代码行数:32,代码来源:search.py


注:本文中的searcher.Searcher.search方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。