当前位置: 首页>>代码示例>>Python>>正文


Python LinearOperator.rmatvec方法代码示例

本文整理汇总了Python中scipy.sparse.linalg.LinearOperator.rmatvec方法的典型用法代码示例。如果您正苦于以下问题:Python LinearOperator.rmatvec方法的具体用法?Python LinearOperator.rmatvec怎么用?Python LinearOperator.rmatvec使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.sparse.linalg.LinearOperator的用法示例。


在下文中一共展示了LinearOperator.rmatvec方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _diagonal_operator

# 需要导入模块: from scipy.sparse.linalg import LinearOperator [as 别名]
# 或者: from scipy.sparse.linalg.LinearOperator import rmatvec [as 别名]
def _diagonal_operator(diag):
    """Creates an operator representing a 
    multiplication with a diagonal matrix"""
    diag = diag.ravel()[:, np.newaxis]

    def diag_matvec(vec):
        if vec.ndim > 1:
            return diag * vec
        else:
            return diag.ravel() * vec

    linop = LinearOperator(shape=(len(diag), len(diag)),
                           matvec=diag_matvec,
                           rmatvec=diag_matvec,
                           dtype=np.float64)
    linop.matvec = diag_matvec
    linop.rmatvec = diag_matvec

    return linop
开发者ID:eickenberg,项目名称:fbg_code,代码行数:21,代码来源:multi_target_ridge_with_noise_covariance.py

示例2: get_grad_linop

# 需要导入模块: from scipy.sparse.linalg import LinearOperator [as 别名]
# 或者: from scipy.sparse.linalg.LinearOperator import rmatvec [as 别名]
def get_grad_linop(X, Y, invcovB, invcovN, alpha):
    """
    Linear operator implementing the gradient of the functional
    \frac{1}{2} \|Y - XB\|^2_{\Sigma_n} + \frac{1}{2} \|B\|^2_{\Sigma_s}

    which reads
    grad_B = X^T(XB - Y)\Sigma_n^{-1} + \lambda B\Sigma_s^{-1}
    """

    N, P = X.shape
    T = invcovB.shape[0]

    if P <= N:
        XTX = aslinearoperator(X.T.dot(X))
        XTYinvcovN = invcovN.rmatvec(Y.T.dot(X)).T

        def matvec(vecB):
            XTXB = XTX.matvec(vecB.reshape(T, P).T)
            XTXB_invcovN = invcovN.rmatvec(XTXB.T).T
            B_incovB = invcovB.rmatvec(vecB.reshape(T, P)).T
            result = XTXB_invcovN - XTYinvcovN + alpha * B_incovB
            return result.T.ravel()
    else:
        # raise(Exception)
        def matvec(vecB):
            XB_minus_Y_invcovN = invcovN.rmatvec(
                (X.dot(vecB.reshape(T, P).T) - Y).T).T
            XT_XB_minus_Y_invcovN = X.T.dot(XB_minus_Y_invcovN)
            B_incovB = invcovB.rmatvec(vecB.reshape(T, P)).T
            result = XT_XB_minus_Y_invcovN + alpha * B_incovB
            return result.T.ravel()

    linop = LinearOperator(shape=tuple([X.shape[1] * Y.shape[1]] * 2),
                           matvec=matvec,
                           rmatvec=matvec,
                           dtype=np.dtype('float64'))
    linop.matvec = matvec
    linop.rmatvec = matvec
    linop.dtype = np.dtype('float64')

    return linop
开发者ID:eickenberg,项目名称:fbg_code,代码行数:43,代码来源:multi_target_ridge_with_noise_covariance.py

示例3: _woodbury_inverse

# 需要导入模块: from scipy.sparse.linalg import LinearOperator [as 别名]
# 或者: from scipy.sparse.linalg.LinearOperator import rmatvec [as 别名]
def _woodbury_inverse(Ainv, Cinv, U, V):
    """Uses Woodbury Matrix Identity to invert the Matrix
    (A + UCV) ^ (-1)
    See http://en.wikipedia.org/wiki/Woodbury_matrix_identity"""

    def matvec(x):
        # this is probably wildly suboptimal, but it works
        Ainv_x = Ainv.matvec(x)
        Cinv_mat = Cinv.matvec(np.eye(Cinv.shape[0]))
        VAinvU = V.dot(Ainv.matvec(U))
        inv_Cinv_plus_VAinvU = np.linalg.inv(Cinv_mat + VAinvU)
        VAinv_x = V.dot(Ainv_x)
        inv_blabla_VAinv_x = inv_Cinv_plus_VAinvU.dot(VAinv_x)
        whole_big_block = Ainv.matvec(
            U.dot(inv_blabla_VAinv_x))
        return Ainv_x - whole_big_block

    shape = Ainv.shape
    linop = LinearOperator(shape=shape, matvec=matvec)
    linop.matvec = matvec
    linop.rmatvec = matvec
    return linop
开发者ID:eickenberg,项目名称:fbg_code,代码行数:24,代码来源:multi_target_ridge_with_noise_covariance.py


注:本文中的scipy.sparse.linalg.LinearOperator.rmatvec方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。