本文整理汇总了Python中scipy.optimize.zeros.newton函数的典型用法代码示例。如果您正苦于以下问题:Python newton函数的具体用法?Python newton怎么用?Python newton使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了newton函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_array_newton_failures
def test_array_newton_failures():
"""Test that array newton fails as expected"""
# p = 0.68 # [MPa]
# dp = -0.068 * 1e6 # [Pa]
# T = 323 # [K]
diameter = 0.10 # [m]
# L = 100 # [m]
roughness = 0.00015 # [m]
rho = 988.1 # [kg/m**3]
mu = 5.4790e-04 # [Pa*s]
u = 2.488 # [m/s]
reynolds_number = rho * u * diameter / mu # Reynolds number
def colebrook_eqn(darcy_friction, re, dia):
return (1 / np.sqrt(darcy_friction) +
2 * np.log10(roughness / 3.7 / dia +
2.51 / re / np.sqrt(darcy_friction)))
# only some failures
with pytest.warns(RuntimeWarning):
result = zeros.newton(
colebrook_eqn, x0=[0.01, 0.2, 0.02223, 0.3], maxiter=2,
args=[reynolds_number, diameter], full_output=True
)
assert not result.converged.all()
# they all fail
with pytest.raises(RuntimeError):
result = zeros.newton(
colebrook_eqn, x0=[0.01] * 2, maxiter=2,
args=[reynolds_number, diameter], full_output=True
)
示例2: test_complex_halley
def test_complex_halley():
"""Test Halley's works with complex roots"""
def f(x, *a):
return a[0] * x**2 + a[1] * x + a[2]
def f_1(x, *a):
return 2 * a[0] * x + a[1]
def f_2(x, *a):
retval = 2 * a[0]
try:
size = len(x)
except TypeError:
return retval
else:
return [retval] * size
z = complex(1.0, 2.0)
coeffs = (2.0, 3.0, 4.0)
y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
# (-0.75000000000000078+1.1989578808281789j)
assert_allclose(f(y, *coeffs), 0, atol=1e-6)
z = [z] * 10
coeffs = (2.0, 3.0, 4.0)
y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
assert_allclose(f(y, *coeffs), 0, atol=1e-6)
示例3: test_zero_der_nz_dp
def test_zero_der_nz_dp():
"""Test secant method with a non-zero dp, but an infinite newton step"""
# pick a symmetrical functions and choose a point on the side that with dx
# makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2,
# which has a root at x = 100 and is symmetrical around the line x = 100
# we have to pick a really big number so that it is consistently true
# now find a point on each side so that the secant has a zero slope
dx = np.finfo(float).eps ** 0.33
# 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100
# -> 200 = p0 * (2 + dx) + dx
p0 = (200.0 - dx) / (2.0 + dx)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "RMS of")
x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10)
assert_allclose(x, [100] * 10)
# test scalar cases too
p0 = (2.0 - 1e-4) / (2.0 + 1e-4)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "Tolerance of")
x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0)
assert_allclose(x, 1)
p0 = (-2.0 + 1e-4) / (2.0 + 1e-4)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "Tolerance of")
x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0)
assert_allclose(x, -1)
示例4: test_gh_9608_preserve_array_shape
def test_gh_9608_preserve_array_shape():
"""
Test that shape is preserved for array inputs even if fprime or fprime2 is
scalar
"""
def f(x):
return x**2
def fp(x):
return 2 * x
def fpp(x):
return 2
x0 = np.array([-2], dtype=np.float32)
rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True)
assert(r.converged)
x0_array = np.array([-2, -3], dtype=np.float32)
# This next invocation should fail
with pytest.raises(IndexError):
result = zeros.newton(
f, x0_array, fprime=fp, fprime2=fpp, full_output=True
)
def fpp_array(x):
return 2*np.ones(np.shape(x), dtype=np.float32)
result = zeros.newton(
f, x0_array, fprime=fp, fprime2=fpp_array, full_output=True
)
assert result.converged.all()
示例5: test_array_newton_integers
def test_array_newton_integers(self):
# test secant with float
x = zeros.newton(lambda y, z: z - y ** 2, [4.0] * 2,
args=([15.0, 17.0],))
assert_allclose(x, (3.872983346207417, 4.123105625617661))
# test integer becomes float
x = zeros.newton(lambda y, z: z - y ** 2, [4] * 2, args=([15, 17],))
assert_allclose(x, (3.872983346207417, 4.123105625617661))
示例6: test_newton
def test_newton(self):
for f, f_1, f_2 in [(self.f1, self.f1_1, self.f1_2), (self.f2, self.f2_1, self.f2_2)]:
x = zeros.newton(f, 3, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
示例7: test_newton
def test_newton(self):
for f, f_1, f_2 in [(self.f1, self.f1_1, self.f1_2),
(self.f2, self.f2_1, self.f2_2)]:
x = zeros.newton(f, 3, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, x1=5, tol=1e-6) # secant, x0 and x1
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, tol=1e-6) # newton
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6) # halley
assert_allclose(f(x), 0, atol=1e-6)
示例8: test_newton
def test_newton(self):
f1 = lambda x: x**2 - 2*x - 1
f1_1 = lambda x: 2*x - 2
f1_2 = lambda x: 2.0 + 0*x
f2 = lambda x: exp(x) - cos(x)
f2_1 = lambda x: exp(x) + sin(x)
f2_2 = lambda x: exp(x) + cos(x)
for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
x = zeros.newton(f, 3, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
示例9: test_gh9551_raise_error_if_disp_true
def test_gh9551_raise_error_if_disp_true():
"""Test that if disp is true then zero derivative raises RuntimeError"""
def f(x):
return x*x + 1
def f_p(x):
return 2*x
assert_warns(RuntimeWarning, zeros.newton, f, 1.0, f_p, disp=False)
with pytest.raises(
RuntimeError,
match=r'^Derivative was zero\. Failed to converge after \d+ iterations, value is [+-]?\d*\.\d+\.$'):
result = zeros.newton(f, 1.0, f_p)
root = zeros.newton(f, complex(10.0, 10.0), f_p)
assert_allclose(root, complex(0.0, 1.0))
示例10: test_array_newton_zero_der_failures
def test_array_newton_zero_der_failures(self):
# test derivative zero warning
assert_warns(RuntimeWarning, zeros.newton,
lambda y: y**2 - 2, [0., 0.], lambda y: 2 * y)
# test failures and zero_der
with pytest.warns(RuntimeWarning):
results = zeros.newton(lambda y: y**2 - 2, [0., 0.],
lambda y: 2*y, full_output=True)
assert_allclose(results.root, 0)
assert results.zero_der.all()
assert not results.converged.any()
示例11: test_newton_full_output
def test_newton_full_output(self):
# Test the full_output capability, both when converging and not.
# Use simple polynomials, to avoid hitting platform dependencies
# (e.g. exp & trig) in number of iterations
f1 = lambda x: x**2 - 2*x - 1 # == (x-1)**2 - 2
f1_1 = lambda x: 2*x - 2
f1_2 = lambda x: 2.0 + 0*x
x0 = 3
expected_counts = [(6, 7), (5, 10), (3, 9)]
for derivs in range(3):
kwargs = {'tol': 1e-6, 'full_output': True, }
for k, v in [['fprime', f1_1], ['fprime2', f1_2]][:derivs]:
kwargs[k] = v
x, r = zeros.newton(f1, x0, disp=False, **kwargs)
assert_(r.converged)
assert_equal(x, r.root)
assert_equal((r.iterations, r.function_calls), expected_counts[derivs])
if derivs == 0:
assert(r.function_calls <= r.iterations + 1)
else:
assert_equal(r.function_calls, (derivs + 1) * r.iterations)
# Now repeat, allowing one fewer iteration to force convergence failure
iters = r.iterations - 1
x, r = zeros.newton(f1, x0, maxiter=iters, disp=False, **kwargs)
assert_(not r.converged)
assert_equal(x, r.root)
assert_equal(r.iterations, iters)
if derivs == 1:
# Check that the correct Exception is raised and
# validate the start of the message.
with pytest.raises(
RuntimeError,
match='Failed to converge after %d iterations, value is .*' % (iters)):
x, r = zeros.newton(f1, x0, maxiter=iters, disp=True, **kwargs)
示例12: test_array_newton
def test_array_newton(self):
"""test newton with array"""
def f1(x, *a):
b = a[0] + x * a[3]
return a[1] - a[2] * (np.exp(b / a[5]) - 1.0) - b / a[4] - x
def f1_1(x, *a):
b = a[3] / a[5]
return -a[2] * np.exp(a[0] / a[5] + x * b) * b - a[3] / a[4] - 1
def f1_2(x, *a):
b = a[3] / a[5]
return -a[2] * np.exp(a[0] / a[5] + x * b) * b**2
a0 = np.array([
5.32725221, 5.48673747, 5.49539973,
5.36387202, 4.80237316, 1.43764452,
5.23063958, 5.46094772, 5.50512718,
5.42046290
])
a1 = (np.sin(range(10)) + 1.0) * 7.0
args = (a0, a1, 1e-09, 0.004, 10, 0.27456)
x0 = [7.0] * 10
x = zeros.newton(f1, x0, f1_1, args)
x_expected = (
6.17264965, 11.7702805, 12.2219954,
7.11017681, 1.18151293, 0.143707955,
4.31928228, 10.5419107, 12.7552490,
8.91225749
)
assert_allclose(x, x_expected)
# test halley's
x = zeros.newton(f1, x0, f1_1, args, fprime2=f1_2)
assert_allclose(x, x_expected)
# test secant
x = zeros.newton(f1, x0, args=args)
assert_allclose(x, x_expected)
示例13: test_gh8904_zeroder_at_root_fails
def test_gh8904_zeroder_at_root_fails():
"""Test that Newton or Halley don't warn if zero derivative at root"""
# a function that has a zero derivative at it's root
def f_zeroder_root(x):
return x**3 - x**2
# should work with secant
r = zeros.newton(f_zeroder_root, x0=0)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
# test again with array
r = zeros.newton(f_zeroder_root, x0=[0]*10)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
# 1st derivative
def fder(x):
return 3 * x**2 - 2 * x
# 2nd derivative
def fder2(x):
return 6*x - 2
# should work with newton and halley
r = zeros.newton(f_zeroder_root, x0=0, fprime=fder)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
r = zeros.newton(f_zeroder_root, x0=0, fprime=fder,
fprime2=fder2)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
# test again with array
r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder,
fprime2=fder2)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
# also test that if a root is found we do not raise RuntimeWarning even if
# the derivative is zero, EG: at x = 0.5, then fval = -0.125 and
# fder = -0.25 so the next guess is 0.5 - (-0.125/-0.5) = 0 which is the
# root, but if the solver continued with that guess, then it will calculate
# a zero derivative, so it should return the root w/o RuntimeWarning
r = zeros.newton(f_zeroder_root, x0=0.5, fprime=fder)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
# test again with array
r = zeros.newton(f_zeroder_root, x0=[0.5]*10, fprime=fder)
assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
示例14: test_complex_halley
def test_complex_halley():
"""Test Halley's works with complex roots"""
def f(x, *a):
return a[0] * x**2 + a[1] * x + a[2]
def f_1(x, *a):
return 2 * a[0] * x + a[1]
def f_2(x, *a):
return 2 * a[0]
z = complex(1.0, 2.0)
coeffs = (2.0, 3.0, 4.0)
y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
# (-0.75000000000000078+1.1989578808281789j)
assert_allclose(f(y, *coeffs), 0, atol=1e-6)
示例15: test_array_secant_active_zero_der
def test_array_secant_active_zero_der(self):
"""test secant doesn't continue to iterate zero derivatives"""
x = zeros.newton(lambda x, *a: x*x - a[0], x0=[4.123, 5],
args=[np.array([17, 25])])
assert_allclose(x, (4.123105625617661, 5.0))