本文整理汇总了Python中scipy.misc.toimage函数的典型用法代码示例。如果您正苦于以下问题:Python toimage函数的具体用法?Python toimage怎么用?Python toimage使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了toimage函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: retrieve
def retrieve(self, request, pano_id=None, heading=0):
target_heading = get_int_value(
request, 'heading', default=heading, upper=360, strategy='modulo')
target_width = get_int_value(
request, 'width', default=750,
lower=1, upper=1600, strategy='cutoff')
target_fov = get_int_value(
request, 'fov', default=80, upper=120, strategy='cutoff')
target_width, target_fov = self._max_fov_per_width(target_width, target_fov)
target_horizon = get_float_value(
request, 'horizon', default=0.3, lower=0.0, upper=1.0)
target_aspect = get_float_value(
request, 'aspect', default=1.5, lower=1.0)
pano = get_object_or_404(Panoramas, pano_id=pano_id)
thumb = Thumbnail(pano)
thumb_img = thumb.get_image(target_width=target_width,
target_fov=target_fov,
target_horizon=target_horizon,
target_heading=target_heading,
target_aspect=target_aspect)
response = HttpResponse(content_type="image/jpeg")
misc.toimage(thumb_img).save(response, "JPEG")
return response
示例2: _data_images
def _data_images():
""" Make images with linear scaling, sqrt scaling, log scaling.
This might take a little bit of time. """
mag, phase = np.abs(self.rs_data), np.angle(self.rs_data)
mag *= self.blocker
# resize, then save the color and scale permutations of first_frame.
linr = mag
sqrt = np.sqrt(mag)
logd = np.log((mag-mag.min())/mag.max()*1000+1)
self.rs_image_linr = io.complex_hsv_image(linr)
self.rs_image_sqrt = io.complex_hsv_image(sqrt*np.exp(1j*phase))
self.rs_image_log = io.complex_hsv_image(logd*np.exp(1j*phase))
imgs = {'logd':smp.toimage(self.rs_image_log),
'sqrt':smp.toimage(self.rs_image_sqrt),
'linr':smp.toimage(self.rs_image_linr)}
base = './static/imaging/images/ifth_session%s_id%s_%s_%s.%s'
for key, val in imgs.items():
val.save(base%(self.session_id, self.data_id,
self.blocker_power, key, 'png'))
val.save(base%(self.session_id, self.data_id,
self.blocker_power, key, 'jpg'))
示例3: print_map
def print_map(self):
ocmap = []
for line in self.occupancy_map:
ocmap.append([cell[0] for cell in line])
npmap = np.array(ocmap)
toimage(npmap, cmin=0.0, cmax=1.0).save('occupancy_map.jpeg')
示例4: detect_blur
def detect_blur(f):
print "Processing %s" % f
im = Image.open("images/orig_"+f+".jpeg")
im = im.convert('F')
im = array(im)
im = filters.laplace(im)
laplacien_im = im
toimage(im).save(out_dir+"/laplacien_"+f+".png", "png")
im = morphology.white_tophat(im, (3,3))
tophat_im = im
toimage(im).save(out_dir+"/tophat_"+f+".png", "png")
im = filters.percentile_filter(im, 30, 1)
toimage(im).save(out_dir+"/final_"+f+".png", "png")
subprocess.call("/usr/local/bin/convert %s/final_%s.png %s/ppm_final_%s.ppm" % (out_dir, f, out_dir,f), shell=True)
subprocess.call("./segment/segment 0.8 100 100 %s/ppm_final_%s.ppm %s/segment_%s.ppm" % (out_dir, f, out_dir,f), shell=True)
im_seg = Image.open("%s/segment_%s.ppm" % (out_dir, f))
im_seg = array(im_seg)
print "laplacien"
laplacian_mask = build_mask(im_seg, laplacien_im)
toimage(laplacian_mask).save(out_dir+"/laplacian_mask_"+f+".png", "png")
print "tophat"
tophat_mask = build_mask(im_seg, tophat_im, 10)
toimage(tophat_mask).save(out_dir+"/tophat_mask_"+f+".png", "png")
示例5: rgbtiffstojpg
def rgbtiffstojpg(files, path, name):
'''
files: a list of files ordered as follow. 0: Blue Band 1: Green Band 2: Red Band
path: the path to look for the tiff files and to save the jpg
'''
import scipy.misc as sm
import gdal
import numpy as np
b2_link = gdal.Open(path+"/tiff/"+files[0])
b3_link = gdal.Open(path+"/tiff/"+files[1])
b4_link = gdal.Open(path+"/tiff/"+files[2])
# call the norm function on each band as array converted to float
def norm(band):
band_min, band_max = band.min(), band.max()
return ((band - band_min) / (band_max - band_min))
b2 = norm(b2_link.ReadAsArray().astype(np.float))
b3 = norm(b3_link.ReadAsArray().astype(np.float))
b4 = norm(b4_link.ReadAsArray().astype(np.float))
# Create RGB
rgb = np.dstack((b4, b3, b2))
del b2, b3, b4
sm.toimage(rgb, cmin=np.percentile(rgb,2), cmax=np.percentile(rgb,98)).save(path+'/images/'+name)
示例6: arrayVisualizeS1
def arrayVisualizeS1(self): # Used to plot all of the arrays
for a,n in zip(self.S1.arrays,range(12)): # Plots all of the S1 arrays
array = a.arr
ph = np.empty(array.shape)
for i in range(array.shape[0]):
for j in range(array.shape[1]):
ph[i,j]= array[i,j].output
img = toimage(ph)
plt.subplot(5,3,n+1)
plt.imshow(img)
plt.title('S1_{0}'.format(n+1))
ph = np.empty(self.C0.arrays[0].arr.shape)
for i in range(self.C0.arrays[0].arr.shape[0]): # Plots the input array
for j in range(self.C0.arrays[0].arr.shape[1]):
ph[i,j]= self.C0.arrays[0].arr[i,j].output
img = toimage(ph)
plt.subplot(5,3,13)
for i in range(self.V0.arrays[0].arr.shape[0]): # Plots the inhibitory array
for j in range(self.V0.arrays[0].arr.shape[1]):
ph[i,j]= self.V0.arrays[0].arr[i,j].output
img = toimage(ph)
plt.subplot(5,3,13)
plt.imshow(img)
# plt.subplot(5,3,13)
plt.title('C0')
plt.tight_layout()
plt.draw()
示例7: pairdump
def pairdump():
"可视化模型列"
from layerbase import DrawPatch
import cPickle
sparsedirect = cPickle.load(file('sparselinked','rb'))
drec = sparsedirect.components_.reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('dictpair.jpg')
示例8: overlay_predictions
def overlay_predictions(image, im_softmax,image_shape, threshold, channel, seg_color=(0,255,0,172)):
"""creates a overlay using pixels with p(class) > threshold"""
segmentation = np.expand_dims(im_softmax[:,:,channel] > threshold, 2)
mask = segmentation * np.reshape(np.array(seg_color), (1,1,-1))
mask = misc.toimage(mask, mode="RGBA")
street_im = misc.toimage(image)
street_im.paste(mask, box=None, mask=mask)
return street_im
示例9: test_jpg
def test_jpg(w, img):
prev_i = 100
for i in range(prev_i, 0, -5):
print i,
misc.toimage(img).save("out.jpg", quality = i)
if w.extract(misc.imread("out.jpg")) is None:
return prev_i
prev_i = i
return "unbound"
示例10: test_jpg
def test_jpg(w, img):
prev_i = 100
for i in range(prev_i, 0, -5):
misc.toimage(img).save("out.jpg", quality = i)
try:
w.extract(misc.imread("out.jpg"))
except ReedSolomonError:
return prev_i
prev_i = i
return 5
示例11: showtransform
def showtransform():
"显示神经网络转换结果"
trans = np.load('transform.npy')[:,0]
glassmodel = np.load('glassline.npy').astype('f').reshape((-1,45,90))
glassmodel /= np.max(glassmodel)
trans = np.insert(trans,2,glassmodel,axis=1)
p = trans[:,0].reshape((trans.shape[0],-1))
trans[:,0] -= ((p.max(axis=1)+p.mean(axis=1))*0.5).reshape((-1,1,1))
trans[:,0] = np.where(trans[:,0]>0, trans[:,0],0)
from layerbase import DrawPatch
misc.toimage(DrawPatch(trans,False,'bgy')).save('nntrans.png')
示例12: reshapeAndPrint
def reshapeAndPrint( components, fold ):
'''Takes in the vector encoding of each of the nmf components
and plots them to file'''
imHeight = 192
imWidth = 168
nComp = np.shape(components)[0]
for comp in range(nComp):
image = np.reshape(components[comp,:],(imHeight,imWidth),order='C')
savestring = './Results/images/nComp' + str(nComp) + \
'_comp' + str(comp) + '_fold' + str(fold) + '.jpg'
misc.toimage(image, cmin=0.0, cmax=...).save(savestring)
示例13: png_buffer
def png_buffer(array):
"""Convert an array to PNG, handling transparency in an
at-least-partially-sane manner."""
assert array.ndim == 2
im = toimage(array)
alpha = toimage(array != 0)
im.putalpha(alpha)
# Return format is a buffer of PNG-encoded data
fp = BytesIO()
im.save(fp, format='png')
return fp.getbuffer()
示例14: main
def main():
image = bayer("itau02.png")
template = bayer("keyboard.png")
correlation = correlate(image, template)
c_max = max(correlation)
c_min = min(correlation)
signal = (correlation - c_min) * 255 / (c_max - c_min)
toimage(signal).save("signal.png")
winner = where(correlation == c_max, 255, 0)
toimage(winner).save("winner.png")
print searchmax(winner)
示例15: get_phase
def get_phase(args):
filename = args[0]
path = args[1]
path_raw = args[2]
path_images = args[3]
mask = args[4]
coord = args[5]
file_in = os.path.join(path,filename)
file_raw = os.path.join(path_raw,'raw_'+filename)
image_phase = os.path.join(path_images,'wrapped'+filename[4:11]+'bmp')
binary_phase = os.path.join(path_raw,'wrapped'+filename[4:11]+'dat')
mod_arr = os.path.join(path_raw,'mod'+filename[4:11]+'dat')
mod_image = os.path.join(path_images,'mod'+filename[4:11]+'bmp')
qual_arr = os.path.join(path_raw,'qual'+filename[4:11]+'dat')
qual_image = os.path.join(path_images,'qual'+filename[4:11]+'bmp')
# Open meas file and grab dataset
try:
f = File(file_in, 'r')
except:
print 'Corrupt h5 file: '+filename+' ignoring'
return
sub = f.get(r'measurement0/frames/frame_full/data')
data = np.array(sub[coord[0]-1:coord[1]+1,coord[2]-1:coord[3]+1],'f')
f.close()
# Get phase
phase, modulation, intensity = calc_phase(data)
# Apply mask
phase[~mask] = 0
intensity[~mask] = 0
modulation[~mask] = 0
#phase = phase[coord[0]:coord[1],coord[2]:coord[3]]
# Save phase
toimage(phase).save(image_phase)
phase.tofile(binary_phase)
ave_mod = np.average(modulation[mask])
ave_int = np.average(intensity[mask])
'''
if ave_mod < 0.6:
print filename+' low mod:', ave_mod
else:
sys.stdout.write('.')
'''
return "%s,%f,%f\n" % (filename, ave_int, ave_mod)