本文整理汇总了Python中scipy.misc.imsave函数的典型用法代码示例。如果您正苦于以下问题:Python imsave函数的具体用法?Python imsave怎么用?Python imsave使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了imsave函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _generate_images_for_AMT
def _generate_images_for_AMT(self, pred_ann_ids,
coco_image_dir=None, local_image_dir=None):
"""Private function to generated images to upload to AMT."""
assert coco_image_dir and local_image_dir
assert os.path.isdir(coco_image_dir)
if not os.path.isdir(local_image_dir):
print 'Input local image directory does not exist, create it'
os.makedirs(local_image_dir)
print 'Start to generate images for AMT in local hard disk'
image_ids_saved = set()
for (ind, pred_ann_id) in enumerate(pred_ann_ids):
gt_data = self.refexp_dataset.loadAnns(ids = [pred_ann_id])[0] # Need to check - change
img = self._read_image(coco_image_dir, gt_data)
mask = self._load_mask(gt_data)
masked_img = cu.apply_mask_to_image(img, mask)
masked_img_path = os.path.join(local_image_dir, ('coco_%d_ann_%d'
'_masked.jpg' % (gt_data['image_id'], pred_ann_id)))
misc.imsave(masked_img_path, masked_img)
if not gt_data['image_id'] in image_ids_saved:
image_ids_saved.add(gt_data['image_id'])
img_path = os.path.join(local_image_dir, 'coco_%d.jpg' % gt_data['image_id'])
misc.imsave(img_path, img)
print ('Images generated in local hard disk, please make sure to make them '
'publicly available online.')
示例2: do
def do(self, which_callback, *args):
from gatedpixelblocks import n_channel, batch_size, img_dim, MODE, path, dataset
model = self.main_loop.model
net_output = VariableFilter(roles=[OUTPUT])(model.variables)[-2]
#print '{} output used'.format(net_output)
Sampler = SamplerMultinomial if MODE == '256ary' else SamplerBinomial
pred = Sampler(theano_seed=random.randint(0,1000)).apply(net_output)
forward = ComputationGraph(pred).get_theano_function()
# Need to replace by a scan??
output = np.zeros((batch_size, n_channel, img_dim, img_dim), dtype=np.float32)
x, y, c = (0,0,0) # location
# if input_ is not None:
# output[:,:c+1,:x,:y] = input_[:,:c+1,:x,:y]
for row in range(x, img_dim):
col_ind = y * (row == x) # Start at column y for the first row to predict
for col in range(col_ind, img_dim):
for chan in range(n_channel):
prediction = forward(output)[0]
output[:,chan,row,col] = prediction[:,chan,row,col]
output = output.reshape((4, 4, n_channel, img_dim, img_dim)).transpose((1,3,0,4,2))
if n_channel == 1:
output = output.reshape((4*img_dim,4*img_dim))
else:
output = output.reshape((4*img_dim,4*img_dim,n_channel))
imsave(
path+'/'+'{}_samples_epoch{}.jpg'.format(dataset, str(self.main_loop.log.status['epochs_done'])),
output
)
示例3: run
def run(self, img=misc.lena(), increase=True):
img = misc.imread('/Users/Daniel/Desktop/p0.jpg')
img_blurred = self.__blur(img)
img = self.__divide(img, img_blurred)
if False:
img = exposure.adjust_sigmoid(img)
misc.imsave('/Users/Daniel/Desktop/p1.jpg', img)
示例4: save_images
def save_images(X, save_path):
# [0, 1] -> [0,255]
if isinstance(X.flatten()[0], np.floating):
X = (255.99 * X).astype('uint8')
n_samples = X.shape[0]
rows = int(np.sqrt(n_samples))
while n_samples % rows != 0:
rows -= 1
nh, nw = rows, n_samples // rows
if X.ndim == 2:
X = np.reshape(X, (X.shape[0], int(np.sqrt(X.shape[1])), int(np.sqrt(X.shape[1]))))
img = None
if X.ndim == 4:
# BCHW -> BHWC
X = X.transpose(0, 2, 3, 1)
h, w = X[0].shape[:2]
img = np.zeros((h * nh, w * nw, 3))
elif X.ndim == 3:
h, w = X[0].shape[:2]
img = np.zeros((h * nh, w * nw))
for n, x in enumerate(X):
j = n // nw
i = n % nw
img[j * h:j * h + h, i * w:i * w + w] = x
imsave(save_path, img)
示例5: create_ndvi
def create_ndvi(rgb, ir, saveto=None):
"""
Create an NDVI image
Parameters:
rgb - PhenoCam RGB image with same timestamp as ir
ir - PhenoCam IR image with same timestamp as rgb
saveto - Path to save NDVI image to (optional)
Returns:
ndvi - A numpy matrix representing an NDVI image.
"""
# Extract the necessary bands
red = rgb[:,:,0].astype(np.int16)
ir = ir[:,:,0].astype(np.int16)
# Create a new numpy matrix to contain the ndvi image.
ndvi = np.zeros(red.shape) # Should be same shape as red band
ndvi = np.true_divide(np.subtract(ir, red), np.add(ir, red))
if saveto:
misc.imsave(saveto, ndvi)
return ndvi
示例6: main
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=0, type=int,
help='if -1, use cpu only')
parser.add_argument('-c', '--chainermodel')
parser.add_argument('-i', '--img-files', nargs='+', required=True)
args = parser.parse_args()
img_files = args.img_files
gpu = args.gpu
chainermodel = args.chainermodel
save_dir = 'forward_out'
if not osp.exists(save_dir):
os.makedirs(save_dir)
target_names = apc2015.APC2015.target_names
forwarding = Forwarding(gpu, target_names, chainermodel)
for img_file in img_files:
img, label, _ = forwarding.forward_img_file(img_file)
out_img = forwarding.visualize_label(img, label)
out_file = osp.join(save_dir, osp.basename(img_file))
imsave(out_file, out_img)
print('- out_file: {0}'.format(out_file))
示例7: main
def main():
input = hl.ImageParam(float_t, 3, "input")
levels = 10
interpolate = get_interpolate(input, levels)
# preparing input and output memory buffers (numpy ndarrays)
input_data = get_input_data()
assert input_data.shape[2] == 4
input_image = hl.Buffer(input_data)
input.set(input_image)
input_width, input_height = input_data.shape[:2]
t0 = datetime.now()
output_image = interpolate.realize(input_width, input_height, 3)
t1 = datetime.now()
print('Interpolated in %.5f secs' % (t1-t0).total_seconds())
output_data = hl.buffer_to_ndarray(output_image)
# save results
input_path = "interpolate_input.png"
output_path = "interpolate_result.png"
imsave(input_path, input_data)
imsave(output_path, output_data)
print("\nblur realized on output image.",
"Result saved at", output_path,
"( input data copy at", input_path, ")")
print("\nEnd of game. Have a nice day!")
示例8: filter_test_image
def filter_test_image(bilateral_grid, input):
bilateral_grid.compile_jit()
# preparing input and output memory buffers (numpy ndarrays)
input_data = get_input_data()
input_image = Buffer(input_data)
input.set(input_image)
output_data = np.empty(input_data.shape, dtype=input_data.dtype, order="F")
output_image = Buffer(output_data)
if False:
print("input_image", input_image)
print("output_image", output_image)
# do the actual computation
bilateral_grid.realize(output_image)
# save results
input_path = "bilateral_grid_input.png"
output_path = "bilateral_grid.png"
imsave(input_path, input_data)
imsave(output_path, output_data)
print("\nbilateral_grid realized on output_image.")
print("Result saved at '", output_path,
"' ( input data copy at '", input_path, "' ).", sep="")
return
示例9: markImage
def markImage(filename, minX, minY, maxX, maxY):
img = misc.imread(PATH + filename, False)
#print filename
#print img.shape
if (len(img.shape) < 3):
img = img2rgb(img)
for row in range(minY, maxY):
img[row][minX][0] = 0
img[row][minX][1] = 0
img[row][minX][2] = 255
img[row][maxX][0] = 0
img[row][maxX][1] = 0
img[row][maxX][2] = 255
for col in range(minX, maxX):
img[minY][col][0] = 0
img[minY][col][1] = 0
img[minY][col][2] = 255
img[maxY][col][0] = 0
img[maxY][col][1] = 0
img[maxY][col][2] = 255
misc.imsave(PATH+filename,img)
示例10: run_example
def run_example( size = 64 ):
"""
Run this file and result will be saved as 'rsult.jpg'
Buttle neck: map
"""
modes = """
normal
add substract multiply divide
dissolve overlay screen pin_light
linear_light soft_light vivid_light hard_light
linear_dodge color_dodge linear_burn color_burn
light_only dark_only lighten darken
lighter_color darker_color
"""
top = misc.imresize( misc.imread('./imgs/top.png')[:,:,:-1], (size,size,3) )
base = misc.imresize( misc.imread('./imgs/base.png')[:,:,:-1], (size,size,3) )
modes = modes.split()
num_of_mode = len( modes )
result = np.zeros( [ size*2, size*(num_of_mode//2+2), 3 ])
result[:size:,:size:,:] = top
result[size:size*2:,:size:,:] = base
for index in xrange( num_of_mode ):
y = index // 2 + 1
x = index % 2
tmp= blends.blend( top, base, modes[index] )
result[ x*size:(x+1)*size, y*size:(y+1)*size, : ] = tmp
# random blend
result[-size::,-size::,:] = blends.random_blend( top, base )
misc.imsave('result.jpg',result)
示例11: filter_test_image
def filter_test_image(local_laplacian, input):
local_laplacian.compile_jit()
# preparing input and output memory buffers (numpy ndarrays)
input_data = get_input_data()
input_image = Image(input_data, "input_image")
input.set(input_image)
output_data = np.empty(input_data.shape, dtype=input_data.dtype, order="F")
output_image = Image(output_data, "output_image")
if False:
print("input_image", input_image)
print("output_image", output_image)
# do the actual computation
local_laplacian.realize(output_image)
# save results
input_path = "local_laplacian_input.png"
output_path = "local_laplacian.png"
imsave(input_path, input_data)
imsave(output_path, output_data)
print("\nlocal_laplacian realized on output_image.")
print("Result saved at '", output_path,
"' ( input data copy at '", input_path, "' ).", sep="")
return
示例12: resize_and_save
def resize_and_save(df, img_name, true_idx, size='80x50', fraction=0.125):
'''
INPUT: (1) Pandas DF
(2) string: image name
(3) integer: the true index in the df of the image
(4) string: to append to filename
(5) float: fraction to scale images by
OUTPUT: None
Resize and save the images in a new directory.
Try to read the image. If it fails, download it to the raw data directory.
Finally, read in the full size image and resize it.
'''
try:
img = imread(img_name)
except:
cardinal_dir = img_name[-5:-4]
cardinal_translation = {'N': 0, 'E': 90, 'S': 180, 'W': 270}
coord = (df.ix[true_idx]['lat'], df.ix[true_idx]['lng'])
print 'Saving new image...'
print coord, cardinal_dir, cardinal_translation[cardinal_dir]
save_image(coord, cardinal_translation[cardinal_dir], loc='newdata')
finally:
img_name_to_write = ('newdata_' + size + '/' +
img_name[8:-4] + size + '.png')
if os.path.isfile(img_name_to_write) == False:
img = imread(img_name)
resized = imresize(img, fraction)
print 'Writing file...'
imsave(img_name_to_write, resized)
示例13: rigid_alignment
def rigid_alignment(faces,path,plotflag=False):
""" 画像を位置合わせし、新たな画像として保存する。
pathは、位置合わせした画像の保存先
plotflag=Trueなら、画像を表示する """
# 最初の画像の点を参照点とする
refpoints = faces.values()[0]
# 各画像を相似変換で変形する
for face in faces:
points = faces[face]
R,tx,ty = compute_rigid_transform(refpoints, points)
T = array([[R[1][1], R[1][0]], [R[0][1], R[0][0]]])
im = array(Image.open(os.path.join(path,face)))
im2 = zeros(im.shape, 'uint8')
# 色チャンネルごとに変形する
for i in range(len(im.shape)):
im2[:,:,i] = ndimage.affine_transform(im[:,:,i],linalg.inv(T),
offset=[-ty,-tx])
if plotflag:
imshow(im2)
show()
# 境界で切り抜き、位置合わせした画像を保存する
h,w = im2.shape[:2]
border = (w+h)/20
imsave(os.path.join(path, 'aligned/'+face),
im2[border:h-border,border:w-border,:])
示例14: save_imgs
def save_imgs(indices, fmt, filename):
feats = []
true = []
for i, idx in enumerate(indices):
imsave(fmt.format(i), imagenes[idx])
# labels[idx] - .5 + np.random.standard_normal()*.1,
feats.append([1, cat_probs[idx], brightness[idx]])
true.append(labels[idx])
true = np.array(true)
feats = np.array(feats)
with open(filename,'w') as f:
print('''<style>
div { page-break-after: always; }
table { border-collapse: collapse; margin: 5px; }
td { border: 1px solid black; padding: 5px; }
</style>''', file=f)
for i, feat in enumerate(feats):
print('<div>', file=f)
print('<h1>{}</h1>'.format(i+1), file=f)
print('<img src="{}">'.format(fmt.format(i)), file=f)
print(
'<table><tr>',
''.join('<td>{:.02f}</td>'.format(f) for f in feat),
'</tr><tr>',
''.join(['<td> </td>'] * len(feat)),
'</tr><tr>',
''.join(['<td> </td>'] * len(feat)),
'</tr></table>', file=f)
print('</div>', file=f)
示例15: dump_
def dump_(refs, pid, cam, fnames):
for ref in refs:
img = deref(ref)
if img.size == 0 or img.ndim < 2: break
fname = '{:08d}_{:02d}_{:04d}.jpg'.format(pid, cam, len(fnames))
imsave(osp.join(images_dir, fname), img)
fnames.append(fname)