当前位置: 首页>>代码示例>>Python>>正文


Python misc.imresize函数代码示例

本文整理汇总了Python中scipy.misc.imresize函数的典型用法代码示例。如果您正苦于以下问题:Python imresize函数的具体用法?Python imresize怎么用?Python imresize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了imresize函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: interpolateXYim

    def interpolateXYim(self):

        newWidth = self.image.shape[1]
        
        if newWidth > 1500:
            newWidth = 1500
            newHeight = int(self.image.shape[0]*newWidth/float(self.image.shape[1]))    
            print newWidth, newHeight, 'newWidth, newHeight'
            print self.image.size, 'size'
            
            #if self.image.size == 2:
           
            #    self.image = misc.imresize(self.image, (newHeight, newWidth), mode = 'F')
                
           # elif self.image.size == 3:
           #     print self.image.shape[2], 'shape2'
           #     self.image = misc.imresize(self.image, (newHeight, newWidth, self.image.shape[2]), mode = 'F')
           # else:
            self.image = misc.imresize(self.image, (newHeight, newWidth))
                
        else:
            newHeight = self.image.shape[0]
        
        imX = self.Xmat
        imY = self.Ymat
    
        imX[imX == 0.] = np.nan
        imY[imY == 0.] = np.nan
    
        imX = misc.imresize(imX,(newHeight, newWidth), interp = 'bicubic', mode = 'F')
        imY = misc.imresize(imY,(newHeight, newWidth), interp = 'bicubic', mode = 'F')
        
        self.Xmat = imX
        self.Ymat = imY
开发者ID:ArArgyridis,项目名称:pic2map,代码行数:34,代码来源:ortho.py

示例2: preprocess_screen

	def preprocess_screen(self, observation):
		screen_width = config.ale_screen_size[0]
		screen_height = config.ale_screen_size[1]
		new_width = config.ale_scaled_screen_size[0]
		new_height = config.ale_scaled_screen_size[1]
		if len(observation.intArray) == 100928: 
			observation = np.asarray(observation.intArray[128:], dtype=np.uint8).reshape((screen_width, screen_height, 3))
			observation = spm.imresize(observation, (new_height, new_width))
			# Clip the pixel value to be between 0 and 1
			if config.ale_screen_channels == 1:
				# Convert RGB to Luminance
				observation = np.dot(observation[:,:,:], [0.299, 0.587, 0.114])
				observation = observation.reshape((new_height, new_width, 1))
			observation = observation.transpose(2, 0, 1) / 255.0
			observation /= (np.max(observation) + 1e-5)
		else:
			# Greyscale
			if config.ale_screen_channels == 3:
				raise Exception("You forgot to add --send_rgb option when you run ALE.")
			observation = np.asarray(observation.intArray[128:]).reshape((screen_width, screen_height))
			observation = spm.imresize(observation, (new_height, new_width))
			# Clip the pixel value to be between 0 and 1
			observation = observation.reshape((1, new_height, new_width)) / 255.0
			observation /= (np.max(observation) + 1e-5)

		observed_screen = observation
		if self.last_observed_screen is not None:
			observed_screen = np.maximum(observation, self.last_observed_screen)

		self.last_observed_screen = observation
		return observed_screen
开发者ID:musyoku,项目名称:deep-q-network,代码行数:31,代码来源:agent.py

示例3: test_bicubic

def test_bicubic():
    origin = io.imread('baby_GT[gray].bmp')
    im_jor = io.imread('baby_JOR[gray].bmp')
    im_my = io.imread("baby_MY[gray].bmp")

    image = io.imread('baby_GT.bmp')
    shape = origin.shape

    if len(shape) == 3:
        test_img = image[:shape[0]-shape[0] % 3, :shape[1]-shape[1] % 3, :]
    else:
        test_img = image[:shape[0]-shape[0] % 3, :shape[1]-shape[1] % 3]

    lim = imresize(test_img, 1/3.0, 'bicubic')
    mim = imresize(lim, 2.0, 'bicubic')
    rim = imresize(lim, 3.0, 'bicubic')

    lim = np.asarray(tc.rgb2ycbcr(lim)[:, :, 0], dtype=float)
    image = np.asarray(tc.rgb2ycbcr(test_img)[:, :, 0], dtype=float)
    mim = np.asarray(tc.rgb2ycbcr(mim)[:, :, 0], dtype=float)
    rim = np.asarray(tc.rgb2ycbcr(rim)[:, :, 0], dtype=float)

    print psnr(image*1.0, rim*1.0)
    print psnr(image*1.0, im_my[0:504,0:504]*1.0)

    plt.subplot(221)
    plt.imshow(image, interpolation="None", cmap=cm.gray)
    plt.subplot(222)
    plt.imshow(np.abs(rim), cmap=cm.gray)
    plt.subplot(223)
    plt.imshow(np.abs(im_my), interpolation="None", cmap=cm.gray)
    plt.subplot(224)
    plt.imshow(np.abs(im_jor), interpolation="None", cmap=cm.gray)

    plt.show()
开发者ID:liangz0707,项目名称:mySuperResolution,代码行数:35,代码来源:analsys.py

示例4: downsample

def downsample(x,p_down):
    size = len(imresize(x[0].reshape(28,28),p_down,mode='F').ravel())
    s_tr = np.zeros((x.shape[0], size))
    for i in xrange(x.shape[0]):
      img = x[i].reshape(28,28)
      s_tr[i] = imresize(img,p_down,mode='F').ravel()
    return s_tr
开发者ID:DaiDengxin,项目名称:distillation_privileged_information,代码行数:7,代码来源:mnist.py

示例5: load_data

def load_data(trainingData, trainingLabel,
              testingData, testingLabel,
              resize = False, size = 100, dataset = "IKEA_PAIR"):
    trainingData = os.environ[dataset] + trainingData
    trainingLabel = os.environ[dataset] + trainingLabel
    testingData = os.environ[dataset] + testingData
    testingLabel = os.environ[dataset] + testingLabel

    X_train = np.array(np.load(trainingData),
                       dtype = np.float32)
    Y_train = np.array(np.load(trainingLabel),
                       dtype = np.uint8)
    X_test = np.array(np.load(testingData),
                      dtype = np.float32)
    Y_test = np.array(np.load(testingLabel),
                      dtype = np.uint8)

    print("resizing....")
    if resize:
        X_train = np.array([misc.imresize(X_train[i],
                                          size = (size, size, 3)) /255.0
                            for i in range(X_train.shape[0])], dtype=np.float32)
        X_test = np.array([misc.imresize(X_test[i],
                                         size = (size, size, 3)) /255.0
                           for i in range(X_test.shape[0])], dtype=np.float32)
        np.save(trainingData + "_100.npy", X_train)
        np.save(testingData + "_100.npy", X_test)

    X_train = np.rollaxis(X_train, 3, 1)
    X_test = np.rollaxis(X_test, 3, 1)

    print("downresizing....")


    return X_train, Y_train, X_test, Y_test
开发者ID:jiajunshen,项目名称:MultipleDetection,代码行数:35,代码来源:dataPreparation.py

示例6: main

def main():
  scale = 100 #lower this value to make the correlation go faster
  image = imread2("./waldo.png")
  image = imresize(image, scale)
  template = imread2("./template.png")
  template = imresize(template, scale)
  # make grayscale
  image_gray = grayscale(image)
  template = grayscale(template)
  template_w, template_h = template.shape

  gradients_image = gradients(image_gray)
  gradients_image /= np.linalg.norm(gradients_image.flatten())
  gradients_template = gradients(template)
  gradients_template /= np.sum(gradients_template)

  # use cross correlation
  convolved_gradients = correlate2d(gradients_image, gradients_template, mode="same")

  position = np.argmax(convolved_gradients)
  position_x, position_y = np.unravel_index(position, gradients_image.shape)

  #put a big red dot in the middle of where we found our maxima
  dot_rad = 8
  image[position_x-dot_rad:position_x+dot_rad,position_y-dot_rad:position_y+dot_rad,0] = 255
  image[position_x-dot_rad:position_x+dot_rad,position_y-dot_rad:position_y+dot_rad,1:2] = 0

  imsave("./image_matched.png", image )
开发者ID:blackle,项目名称:Year_4,代码行数:28,代码来源:magnitude_match.py

示例7: generate_biomes

def generate_biomes(data_path):
    if os.path.isfile(data_path + "biomes.pkl"):
        return
    
    moisture = pickle.load(open(data_path+"moisture.pkl", 'rb'))
    moisture = imresize(moisture, (IMAGE_HEIGHT, IMAGE_WIDTH))
    plt.imshow(moisture)
    plt.show()
    moisture = np.digitize(moisture, [0, 100, 170, 230, 255])-1
    moisture[moisture > 4] = 4
    plt.imshow(moisture)
    plt.show()
    temp = pickle.load(open(data_path+"temperature.pkl", 'rb'))
    temp = imresize(temp, (IMAGE_HEIGHT, IMAGE_WIDTH))
    plt.imshow(temp)
    plt.show()
    temp = np.digitize(temp, [0, 90, 130, 255])-1
    temp[temp > 2] = 2
    plt.imshow(temp)
    plt.show()

    biomes = [
        [BARE, TUNDRA, TAIGA, SNOW, OCEAN],
        [GRASSLAND, WOODLAND, TEMPERATE_FOREST, TEMPERATE_RAINFOREST, OCEAN],
        [DESERT, SAVANNAH, TROPICAL_SEASONAL_FOREST, TROPICAL_RAINFOREST, OCEAN]
        ]
    img = np.zeros((IMAGE_HEIGHT, IMAGE_WIDTH))
    for i in range(IMAGE_HEIGHT):
        for j in range(IMAGE_WIDTH):
            img[i,j] = biomes[temp[i,j]][moisture[i,j]]
    elevation = pickle.load(open(data_path+"elevation.pkl", 'rb'))
    img[elevation == 0] = OCEAN
    plt.imshow(img)
    plt.show()
    pickle.dump(img, open(data_path+"biomes.pkl", 'wb'))
开发者ID:gumptiousCreator,项目名称:dmtools,代码行数:35,代码来源:worldgen.py

示例8: cropImage

def cropImage(im):
    im2 = np.dstack(im).astype(np.uint8)
    # return centered 128x128 from original 250x250 (40% of area)
    newim = im2[61:189, 61:189]
    sized1 = imresize(newim[:,:,0:3], (feature_width, feature_height), interp="bicubic", mode="RGB")
    sized2 = imresize(newim[:,:,3:6], (feature_width, feature_height), interp="bicubic", mode="RGB")
    return np.asarray([sized1[:,:,0], sized1[:,:,1], sized1[:,:,2], sized2[:,:,0], sized2[:,:,1], sized2[:,:,2]])
开发者ID:alyato,项目名称:lfw_fuel,代码行数:7,代码来源:run-lfw.py

示例9: makeTestPair

def makeTestPair(paths, homography, collection, location=".", size=(250,250), scale = 1.0) :
    """ Given a pair of paths to two images and a homography between them,
        this function creates two crops and calculates a new homography.
        input: paths [strings] (paths to images)
               homography [numpy.ndarray] (3 by 3 array homography)
               collection [string] (The name of the testset)
               location [string] (The location (path) of the testset
               size [(int, int)] (The size of an image crop in pixels)
               scale [double] (The scale by which we resize the crops after they've been cropped)
        out:   nothing
    """
    
    # Get width and height
    width, height = size
    
    # Load images in black/white
    images = map(loadImage, paths)
    
    # Crop part of first image and part of second image:
    (top_o, left_o) = (random.randint(0, images[0].shape[0]-height), random.randint(0, images[0].shape[1]-width))
    (top_n, left_n) = (random.randint(0, images[1].shape[0]-height), random.randint(0, images[1].shape[1]-width))
    
    # Get two file names
    c_path = getRandPath("%s/%s/" % (location, collection))
    if not exists(dirname(c_path)) : makedirs(dirname(c_path))
        
    # Make sure we save as gray
    pylab.gray()
    
    im1 = images[0][top_o: top_o + height, left_o: left_o + width]
    im2 = images[1][top_n: top_n + height, left_n: left_n + width]
    im1_scaled = imresize(im1, size=float(scale), interp='bicubic')
    im2_scaled = imresize(im2, size=float(scale), interp='bicubic')
    pylab.imsave(c_path + "_1.jpg", im1_scaled)
    pylab.imsave(c_path + "_2.jpg", im2_scaled)
    
    # Homography for transpose
    T1 = numpy.identity(3)
    T1[0,2] = left_o
    T1[1,2] = top_o
    
    # Homography for transpose back
    T2 = numpy.identity(3)
    T2[0,2] = -1*left_n
    T2[1,2] = -1*top_n
    
    # Homography for scale
    Ts = numpy.identity(3)
    Ts[0,0] = scale
    Ts[1,1] = scale
    
    # Homography for scale back
    Tsinv = numpy.identity(3)
    Tsinv[0,0] = 1.0/scale
    Tsinv[1,1] = 1.0/scale
    
    # Combine homographyies and save
    hom = Ts.dot(T2).dot(homography).dot(T1).dot(Tsinv)
    hom = hom / hom[2,2]
    numpy.savetxt(c_path, hom)
开发者ID:arnfred,项目名称:Mirror-Match,代码行数:60,代码来源:murals.py

示例10: create_mask

 def create_mask(self, image, im, blob_list, destination_folder):
   mask_file = np.zeros(shape = (image.shape[0],image.shape[1]))
   if blob_list is not None:
     for bl in blob_list:
       x1 = int(bl[0] - bl[2])
       y1 = int(bl[1] - bl[2])
       x2 = int(bl[0] + bl[2])
       y2 = int(bl[1] + bl[2])
       x1 = np.max([x1, 0])
       y1 = np.max([y1, 0])
       x2 = np.min([x2, int(mask_file.shape[0])])
       y2 = np.min([y2, int(mask_file.shape[1])])
       image1 = image[x1:x2, y1:y2, :]
       im1_sh = image1.shape
       image1 /= 255
       image1_resized = imresize(image1, (128, 128))
       image1_transposed = np.asarray (image1_resized.transpose(2,0,1), dtype = 'float32')
       final_data = np.ndarray(shape = (1,3,128,128))
       final_data[0,:,:,:] = image1_transposed
       y_pred = self.model.predict(final_data, verbose = 0)
       y_pred = np.where(y_pred > 0.5, 1, 0)
       y_pred = np.reshape(y_pred, (64,64))
       y_pred = imresize(y_pred, im1_sh)
       mask_file[x1:x2, y1:y2] += y_pred
       mask_file = np.where(mask_file > 0, 255, 0)
   final_path = destination_folder + '/' + im[:-4] + '-mask.jpg'
   cv2.imwrite(final_path, mask_file)
开发者ID:ernest-s,项目名称:Data-Hacks,代码行数:27,代码来源:stup.py

示例11: get_image_lena

def get_image_lena(query):
    """
    get the image
    :param query:
    :type query:
    :return:
    :rtype:
    """

    args = query.split(sep='_')

    if args[2] == 'grey':
        lena = ndimage.imread('lena.jpg', mode='L')
    elif args[2] == 'rgb':
        lena = ndimage.imread('lena.jpg', mode='RGB')
    else:
        raise ValueError('Invalid color type. Allowed rgb or grey')

    if args[3] == 'small':
        lena = misc.imresize(lena, (2048, 2048), interp='bilinear')
    elif args[3] == 'large':
        lena = misc.imresize(lena, (4096, 4096), interp='bilinear')
    else:
        raise ValueError('Invalid size. Allowed small or large')

    if args[4] == 'uint8':
        lena = lena.astype(np.uint8)
    elif args[4] == 'float':
        lena = lena.astype(np.float)
    else:
        raise ValueError('Invalid size. Allowed uint8 or float')

    return lena
开发者ID:SpikingNeurons,项目名称:Python-Cython-CUDA,代码行数:33,代码来源:benchmark.py

示例12: depth_cluster_2

def depth_cluster_2(depth_map, rgb_downsampled, orb_depth, downsample=5, depth_ratio=1.0, rgb_ratio=1.0, position_ratio=0.1, remove_noise=False):
  depth_downsampled = imresize(depth_map, (depth_map.shape[0] / downsample, depth_map.shape[1] / downsample), interp='bicubic')
  rgb_downsampled = imresize(rgb_downsampled, (rgb_downsampled.shape[0] / downsample, rgb_downsampled.shape[1] / downsample), interp='bicubic')
  rgb_r = rgb_downsampled[:, :, 0].reshape((rgb_downsampled.shape[0] * rgb_downsampled.shape[1],))
  rgb_g = rgb_downsampled[:, :, 1].reshape((rgb_downsampled.shape[0] * rgb_downsampled.shape[1],))
  rgb_b = rgb_downsampled[:, :, 2].reshape((rgb_downsampled.shape[0] * rgb_downsampled.shape[1],))
  depth_flatten = depth_downsampled.reshape((depth_downsampled.size,))
  x = np.arange(0, depth_downsampled.shape[1], 1).flatten()
  y = np.arange(0, depth_downsampled.shape[0], 1).flatten()
  xx, yy = np.meshgrid(x, y, sparse=False)
  xx = xx.reshape((xx.size))
  yy = yy.reshape((yy.size))
  fit_data = np.stack((depth_flatten * depth_ratio, xx * position_ratio, yy * position_ratio,
                       rgb_r * rgb_ratio, rgb_g * rgb_ratio, rgb_b * rgb_ratio), axis=-1)
  xx_init, yy_init = np.where(orb_depth > 0.0)
  xx_init /= downsample
  yy_init /= downsample
  depth_init = depth_downsampled[(xx_init, yy_init)]
  rgb_init = rgb_downsampled[(xx_init, yy_init)]
  xx_init = xx_init.reshape((xx_init.size,))
  yy_init = yy_init.reshape((yy_init.size,))
  fit_init = np.stack((depth_init * depth_ratio, xx_init * position_ratio, yy_init * position_ratio,
                       rgb_init[:, 0] * rgb_ratio, rgb_init[:, 1] * rgb_ratio, rgb_init[:, 2] * rgb_ratio), axis=-1)
  clt = KMeans(n_clusters=fit_init.shape[0], init=fit_init)
  clt.fit(fit_data)
  _result = clt.labels_.reshape(depth_downsampled.shape)
  if remove_noise:
    structure = np.ones((3, 3))
    labels = np.unique(clt.labels_)
    for label in labels:
      mask = (_result == label)
      eroded_mask = ndimage.binary_erosion(mask, structure)
      border = (mask != eroded_mask)
      _result[border] = 0
  return imresize(_result, depth_map.shape)
开发者ID:hamiee,项目名称:ORB_SLAM_live-map,代码行数:35,代码来源:utils.py

示例13: fastguidedfilter

def fastguidedfilter(I, p, r, eps, s):
    I_sub = imresize(I, 1.0/s, 'nearest')
    p_sub = imresize(p, 1.0/s, 'nearest')
    r_sub = r / s

    h_sub, w_sub = I_sub.shape[:2]
    N = gf.boxfilter(np.ones((h_sub, w_sub),np.float), r)
    mean_I = gf.boxfilter(I_sub, r_sub) / N
    mean_p = gf.boxfilter(I_sub, r_sub) / N
    mean_Ip = gf.boxfilter(I_sub * p_sub, r_sub) / N
    cov_Ip = mean_Ip - mean_I * mean_p

    mean_II = gf.boxfilter(I_sub * I_sub, r_sub) / N
    var_I = mean_II - mean_I * mean_I

    a = cov_Ip / (var_I + eps)
    b = mean_p - a * mean_I

    mean_a = gf.boxfilter(a, r_sub) / N
    mean_b = gf.boxfilter(b, r_sub) / N

    mean_a = imresize(mean_a, I.shape[:2], 'bilinear')
    mean_b = imresize(mean_b, I.shape[:2], 'bilinear')
    q = mean_a * I + mean_b

    return q
开发者ID:KhLiu2018,项目名称:Digital-Image-Processing,代码行数:26,代码来源:fastguidedfilter.py

示例14: PosterPreProc

def PosterPreProc(image,**kwargs):
    """
    This method takes the image of the foil and creates a smoothed Kuwahara image
    used to make the poster for regional thresholding.
    
        Key-word Arguments:
            Mask = 0 - Assign the Mask here
            kern = 6 - Kernal size for poster opening and closing steps
            KuSize = 17 - Size of Kuwahara Filter
            Gaus1 = 5 - Size of first Gaussian Blur
            Gaus2 = 3 - Size of second Gaussian Blur
            rsize = .1 - Resize value
            Kuw_only = False - Option to only return the Kuwahara filtered image
            ExcludeDirt = True - Option to Exclude dirt 
    """
    Mask = kwargs.get("Mask",0) # Assign the Mask here
    kern = kwargs.get("kern",6) # Kernal size for poster opening and closing steps
    KuSize = kwargs.get("KuSize",17) # Size of Kuwahara Filter
    Gaus1 = kwargs.get("Gaus1",5) # Size of first Gaussian Blur
    Gaus2 = kwargs.get("Gaus2",3) # Size of second Gaussian Blur
    rsize = kwargs.get("rsize",.1) # Resize value
    Kuw_only = kwargs.get("Kuw_only",False) # Option to only return the Kuwahara filtered image
    ExcludeDirt = kwargs.get("ExcludeDirt",True) # Option to Exclude dirt from approximation of shading 
    ExcludePt = kwargs.get("ExcludePt",False) 
    img = np.copy(image).astype(np.uint8)
    
    # Calculate the average Apply mask if provided
    if type(Mask)==np.ndarray and Mask.shape==image.shape:
        if Mask.all() == 0:
            averageColor = 0
        else:
            try: 
                averageColor = int(np.average(img[(Mask!=0)&(img>=10)&(img<=245)]))
            except ValueError:
                averageColor = int(np.average(img[(Mask!=0)]))
    else:
        try: 
            averageColor = int(np.average(img[(img>=10)&(img<=245)]))
        except ValueError:
            averageColor = int(np.average(img))
        
    if ExcludeDirt:
        img[img<=40]=averageColor
    if ExcludePt:
        img[img>=(img.max()-10)]=averageColor
        
    if type(Mask)==np.ndarray and Mask.shape==image.shape:
        img[Mask==0]=averageColor
    
    proc = img.astype(np.uint8)
    proc = misc.imresize(proc,rsize)
    proc = cv2.morphologyEx(proc,cv2.MORPH_ERODE, (kern,kern)) # Eliminates most platinum spots
    proc = cv2.morphologyEx(proc,cv2.MORPH_DILATE,(kern+1,kern+1)) # Eliminates most dirt spots
    proc = cv2.GaussianBlur(proc,(Gaus1,Gaus1),0)
    proc = Kuwahara.Kuwahara(proc,KuSize)
    if Kuw_only:
        return proc
    proc = cv2.GaussianBlur(proc,(Gaus2,Gaus2),0)
    proc = misc.imresize(proc,img.shape)
    return proc
开发者ID:adussault,项目名称:GenesisSEMImgProc,代码行数:60,代码来源:mainanalysis.py

示例15: reshape_images

    def reshape_images(cls, source_folder, target_folder, height=128, width=128,
                       extensions=('.jpg', '.jpeg', '.png')):
        """ copy images and reshape them"""

        # check source_folder and target_folder:
        cls.check_folder_existance(source_folder, throw_error_if_no_folder=True)
        cls.check_folder_existance(target_folder, display_msg=False)
        if source_folder[-1] == "/":
            source_folder = source_folder[:-1]
        if target_folder[-1] == "/":
            target_folder = target_folder[:-1]

        # read images and reshape:
        print("Resizing '", source_folder, "' images...")
        for filename in os.listdir(source_folder):
            if os.path.isdir(source_folder + '/' + filename):
                cls.reshape_images(source_folder + '/' + filename,
                                   target_folder + '/' + filename,
                                   height, width, extensions=extensions)
            else:
                if extensions == '' and os.path.splitext(filename)[1] == '':
                    copy2(source_folder + "/" + filename,
                          target_folder + "/" + filename)
                    image = ndimage.imread(target_folder + "/" + filename, mode="RGB")
                    image_resized = misc.imresize(image, (height, width))
                    misc.imsave(target_folder + "/" + filename, image_resized)
                else:
                    for extension in extensions:
                        if filename.endswith(extension):
                            copy2(source_folder + "/" + filename,
                                  target_folder + "/" + filename)
                            image = ndimage.imread(target_folder + "/" + filename, mode="RGB")
                            image_resized = misc.imresize(image, (height, width))
                            misc.imsave(target_folder + "/" + filename, image_resized)
开发者ID:zchengquan,项目名称:images-web-crawler,代码行数:34,代码来源:dataset_builder.py


注:本文中的scipy.misc.imresize函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。