当前位置: 首页>>代码示例>>Python>>正文


Python misc.imread函数代码示例

本文整理汇总了Python中scipy.misc.imread函数的典型用法代码示例。如果您正苦于以下问题:Python imread函数的具体用法?Python imread怎么用?Python imread使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了imread函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: batch_predict

def batch_predict(filenames, net):
    """
    Get the features for all images from filenames using a network

    Inputs:
    filenames: a list of names of image files

    Returns:
    an array of feature vectors for the list of files given
    """

    N, C, H, W = net.blobs[net.inputs[0]].data.shape
    F = net.blobs[net.outputs[0]].data.shape[1]
    Nf = len(filenames)
    Hi, Wi, _ = imread(filenames[0]).shape
    allftrs = np.zeros((Nf, F))
    for i in range(0, Nf, N):
        in_data = np.zeros((N, C, H, W), dtype=np.float32)

        batch_range = range(i, min(i+N, Nf))
        batch_filenames = [filenames[j] for j in batch_range]
        Nb = len(batch_range)

        batch_images = np.zeros((Nb, 3, H, W))
        for j,fname in enumerate(batch_filenames):
            im = imread(fname)
            # change grayscale to RGB
            if len(im.shape) == 2:
                im = np.tile(im[:,:,np.newaxis], (1,1,3))

            # lots of steps here to convert a scipy imread image to
            # the dimensions and channel ordering that caffe expects
            # Briefly, scipy.io.imread returns a HxWxC array in RGB channel order, 
            # whereas we need a CxHxW array in BGR order and subtract the mean
            
            # RGB -> BGR
    #        im = im[:,:,(2,1,0)]
            # mean subtraction

            #im = im - np.array([103.939, 116.779, 123.68])
            # resize
            im = imresize(im, (H, W))
            MEAN_FILE = '/afs/cs.stanford.edu/u/anenberg/scr/CS231N/examples/UCFff/mean.npy'
		# get channel in correct dimension
            im = np.transpose(im, (2, 0, 1))
            im = im - np.load(MEAN_FILE)
            batch_images[j,:,:,:] = im

        # insert into correct place
        in_data[0:len(batch_range), :, :, :] = batch_images

        # predict features
        ftrs = predict(in_data, net)

        for j in range(len(batch_range)):
            allftrs[i+j,:] = ftrs[j,:]

        print 'Done %d/%d files' % (i+len(batch_range), len(filenames))

    return allftrs
开发者ID:VeyronWang,项目名称:CS231_Project,代码行数:60,代码来源:tester.py

示例2: searchPic

def searchPic():
    searchTerm = kwords.get()
    searchTerm = searchTerm.replace(' ','%20')
    url = ('https://ajax.googleapis.com/ajax/services/search/images?v=1.0&q=' +
           searchTerm+ '&userip=INSERT-USER-IP')
    request = urllib2.Request(url)
    response = urllib2.urlopen(request)    
    # Process the JSON string.
    results = simplejson.load(response)
    imgURL = results['responseData']['results'][0]['unescapedUrl']
    imgName = imgURL.split('/')[-1]
    img_temp = urllib.URLopener().retrieve(imgURL, imgName)
    img_array = imread(img_temp[0])
    url_label.config(text=imgURL)
    
    imgLF.image = imread(imgName, flatten=True)
    imgLF.image_clr = imread(imgName)
    ax1.imshow(imgLF.image, cmap=plt.cm.gray)
    canvas.show()
    
    refresh.config(state=NORMAL, command=refresh_func)
    blur.config(state=NORMAL, command=blur_func)
    sharpen.config(state=NORMAL, command=sharpen_func)
    smooth.config(state=NORMAL, command=smooth_func)
    edge.config(state=NORMAL, command=edge_func)
    #contrast.config(state=NORMAL, command=contrast_func)
    color.config(state=NORMAL, command=color_func)
    decolor.config(state=NORMAL, command=decolor_func)
    brighten.config(state=NORMAL, command=brighten_func)
    darken.config(state=NORMAL, command=darken_func)
开发者ID:yigong,项目名称:AY250,代码行数:30,代码来源:hw8.py

示例3: computeDiff

def computeDiff(file1, file2):
    # read images as 2D arrays (convert to grayscale for simplicity)
    img1 = to_grayscale(imread(file1).astype(float))
    img2 = to_grayscale(imread(file2).astype(float))
    # compare
    n_m, n_0 = compare_images(img1, img2)
    return n_m*1.0/img1.size
开发者ID:amcollier,项目名称:class2go,代码行数:7,代码来源:extractFrames.py

示例4: getHaar

def getHaar (filepath, row, col, Npos, Nneg):
	Nimg = Npos + Nneg
	Nfeatures = 295936 #change this number if you need to use more/less features 
	features = np.zeros((Nfeatures, Nimg))
	
	files = glob.glob(filepath+ "faces/*.jpg")
	for i in xrange (Npos):
		print "\nComputing Haar Face ",i
		imgGray = misc.imread (files[i], flatten=1) #array of floats, gray scale image
		if (i < Npos):
			# convert to integral image
			intImg = np.zeros((row+1,col+1))
			intImg [1:row+1,1:col+1] = np.cumsum(cumsum(imgGray,axis=0),axis=1)	
			# compute features
			features [:,i] = computeFeature(intImg,row,col,Nfeatures) 

			
	files = glob.glob(filepath+ "background/*.jpg")
	for i in xrange (Nneg):
			print "\nComputing Haar Background ",i

			imgGray = misc.imread (files[i], flatten=1) #array of floats, gray scale image
			if (i < Nneg):
				# convert to integral image
				intImg = np.zeros((row+1,col+1))
				intImg [1:row+1,1:col+1] = np.cumsum(cumsum(imgGray,axis=0),axis=1)
				#	print intImg.shape 
				#	import pdb pdb.set_trace()
				# compute features
				features[:,i+Npos] = computeFeature(intImg,row,col,Nfeatures)
			
	# print "feat ", features[1000,:]
	return features
开发者ID:kzenstratus,项目名称:data_science_projects,代码行数:33,代码来源:violajones.py

示例5: copy_incorrect

def copy_incorrect(in_folder, out_folder, incorrect_files="snapshotVGG1-5-test.txt"):
    from scipy.misc import imread, imsave, imrotate
    print(incorrect_files)
    if os.path.exists(incorrect_files):
        f = open(incorrect_files, "r")
        print("File found")
    else:
        f = open(os.path.join(in_folder, "stats", incorrect_files), "r")
    page = f.read()

    sources = page.split('\n')
    print(sources)
    print(len(sources))
    count = 0
    for source in sources:
        if source.find("jpg") >= 0:
            fileinfo = source
            if source.find(",") >= 0:
                fileinfo = source.split(", ")[0]
                rotation = source.split(", ")[1]
                image = imread(fileinfo)
                image = imrotate(image, int(rotation))
            else:
                image = imread(fileinfo)
            if count == 0:
                print(fileinfo)
            count += 1
            destination = os.path.split(fileinfo.replace(in_folder, out_folder))[0]
            if not os.path.exists(destination):
                os.makedirs(destination)
            filename = os.path.split(fileinfo)[1]
            # print(os.path.join(destination, filename))
            imsave(os.path.join(destination, filename), image)
    print("Moved " + str(count) + " files")
开发者ID:Sabrewarrior,项目名称:PhotoOrientation,代码行数:34,代码来源:misc.py

示例6: play_color_likeness

def play_color_likeness(df):
    '''
    INPUT:  (1) Pandas DF
    OUTPUT: None

    Pull 20 images and show the most similar images
    as found by euclidean distance from their color histograms.
    '''
    some_random_files = [random_file_pull(df, yield_all_info=True).next()
                         for _ in range(20)]
    for img_info_tuple in some_random_files:
        source_idx = img_info_tuple[0]
        direction = img_info_tuple[1]
        filename = img_info_tuple[2]
        column_direction = 'nearest_10_neighbors_euclidean_' + direction
        nearest_image_idx = df[column_direction][source_idx][0]
        nearest_image = (df['base_filename'][nearest_image_idx] +
                         direction + '.png')
        print "original image location is {}, {}".format(
                df['lat'][source_idx], df['lng'][source_idx])
        print "new image location is {}, {}".format(
                df['lat'][nearest_image_idx], df['lng'][nearest_image_idx])
        print "the indices in the df are {} and {}".format(
                source_idx, nearest_image_idx)
        print "\n"
        fig = plt.figure(figsize=(16, 8))

        # Show search image and most similar image in database #
        ax = fig.add_subplot(2, 2, 1)
        ax.imshow(imread(filename))
        ax2 = fig.add_subplot(2, 2, 2)
        ax2.imshow(imread(nearest_image))
        ax.set_xticks([])
        ax.set_yticks([])
        ax2.set_xticks([])
        ax2.set_yticks([])

        # Plot scatter of nearest 10 and a sampling of all datapoints #
        # See plot_nearest_10 for a better visualization #
        ax3 = fig.add_subplot(2, 2, 3)
        nearest_10 = find_locations_nearest_10(source_idx, direction)
        true_loc = df['lat'][source_idx], df['lng'][source_idx]
        ax3.scatter(nearest_10[2:, 1], nearest_10[2:, 0])
        ax3.scatter(true_loc[1], true_loc[0], color='#33FFFF',
                    label='true loc', s=30)
        ax3.scatter(nearest_10[0][1], nearest_10[0][0],
                    color='#00FF00', label='best guess', s=30)
        ax3.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2,
                   mode="expand", borderaxespad=0.)
        ax4 = fig.add_subplot(2, 2, 4)
        ax4.scatter(df['lng'][::10], df['lat'][::10])
        ax3.set_xlabel("Longitude")
        ax4.set_xlabel("Longitude")
        ax4.set_ylabel("Latitude")
        ax3.set_ylabel("Latitude")
        ax3.set_xlim(-109.5, -102.5)
        ax4.set_xlim(-109.5, -102.5)
        ax4.set_ylim(37, 41)
        ax3.set_ylim(37, 41)
        plt.show()
开发者ID:JostineHo,项目名称:streetview,代码行数:60,代码来源:organizedImageData.py

示例7: __init__

    def __init__(self, folder, im_type='tif'):
        """
        Load a previously acquired series of projections for analysis and
        reconstruction.

        # folder:    Path to folder where projections are stored. Reconstructed
                     slices will also be saved here.
        """
        self.folder = os.path.split(os.path.abspath(folder))[0]
        self.p0 = 0
        self.cor_offset = 0
        self.crop = None, None, None, None
        self.num_images = None
        self.angles = None

        files = [f for f in os.listdir(folder) if f[-4:] == '.%s' % im_type]
        im_shape = imread(os.path.join(folder, files[0])).shape
        self.im_stack = np.zeros(im_shape + (len(files), ))
        for idx, fname in enumerate(files):
                sys.stdout.write('\rProgress: [{0:20s}] {1:.0f}%'.format('#' *
                                 int(20*(idx + 1) / len(files)),
                                 100*((idx + 1)/len(files))))
                sys.stdout.flush()
                f = os.path.join(folder, fname)
                self.im_stack[:, :, idx] = imread(f)

        self.height = self.im_stack.shape[0]
        self.width = self.im_stack.shape[1]
开发者ID:casimp,项目名称:lightct,代码行数:28,代码来源:load_scan.py

示例8: initialize

	def initialize(self, filename):
		# read filename
		with open(filename) as f:
			for line in f:
				cline = re.split('\s',line)
				# tuple (rgb_filename, gt_filename)
				self.flist.append((cline[0], cline[1]))
		self.N = len(self.flist)

		# get sizes
		(rgbname, gtname) = self.flist[0]
		rgb = misc.imread(rgbname)

		if(gtname.endswith('.png')):
			gt = misc.imread(gtname)
		else:
			gt = np.loadtxt(gtname)
		(self.H, self.W, self.CH) = rgb.shape
		gtshape = gt.shape
		self.HL = gtshape[0]
		self.WL = gtshape[1]
		if(len(gtshape) == 2):
			self.CHL = 1
		else:
			self.CHL = gtshape[2]

		# just retrieve the new sizes
		if( (self.data_transformer is not None) and self.data_transformer.isResized() ):
			(self.H, self.W) = self.data_transformer.getNewDims()
			self.HL = self.H
			self.WL = self.W
开发者ID:germanRos,项目名称:chainer-deconv,代码行数:31,代码来源:BatchManagerFile.py

示例9: doMyTest

def doMyTest(net1):

    #myImage = '/Users/shkejriwal/Documents/personal/data/myPics/small_no_glasses.jpg'
    #myImage = '/Users/shkejriwal/Documents/personal/data/myPics/small.jpg'
    #myImage = '/Users/shkejriwal/Documents/personal/data/myPics/small_sk_closeup.jpg'
    myImage1 = '/Users/shkejriwal/Documents/personal/data/myPics/small_full_face.jpg'
    myImage2 = '/Users/shkejriwal/Documents/personal/data/myPics/small_full_face_no_glass.jpg'

    img1 = scipyMisc.imread(myImage1)
    #X1 = prepare1DImage(img1)
    X1 = prepare2DImage(img1)

    sample1 = load(test=True)[0][6:7]

    img2 = scipyMisc.imread(myImage2)
    #X2 = prepare1DImage(img2)
    X2 = prepare2DImage(img2)
    
    y1 = net1.predict(X1)
    y2 = net1.predict(X2)

    fig = pyplot.figure(figsize=(6, 3))
    ax = fig.add_subplot(1, 2, 1, xticks=[], yticks=[])
    plot_sample(X1[0], y1[0],ax)
    ax = fig.add_subplot(1, 2, 2, xticks=[], yticks=[])
    plot_sample(X2[0], y2[0],ax)

    pyplot.show()
开发者ID:shivamkejriwal,项目名称:FacialRecognition,代码行数:28,代码来源:kfkd.py

示例10: image_compare

def image_compare(df, IMAGES_DIR='/home/ryan/asi_images/'):
    '''
    takes a list of n image ids and returns sum(n..n-1) n comparisons of r2 difference, r2(fft) difference, and average number of thresholded pixels
    '''
    img_buffer = {}
    return_list = []
    artdf = df[['_id', 'images']].copy()
    artdf.images = artdf.images.apply(getpath) 
    paths = artdf[['_id','images']].dropna()
    paths.index = paths._id
    paths = paths.images
    if paths.shape[0] < 2:
        return DataFrame([])
    for id_pair in combinations(paths.index, 2):
        if id_pair[0] in img_buffer:
            img1 = img_buffer[id_pair[0]]
        else:
            img_buffer[id_pair[0]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[0]]), (300,300))))
            img1 = img_buffer[id_pair[0]]
        
        if id_pair[1] in img_buffer:
            img2 = img_buffer[id_pair[1]]
        else:
            img_buffer[id_pair[1]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[1]]), (300,300))))
            img2 = img_buffer[id_pair[1]]
        return_list.append(
                [id_pair[0], id_pair[1], \
                    norm(img1 - img2), \
                    norm(fft2(img1) - fft2(img2)), \
                    #mean([sum(img1 > threshold_otsu(img1)), sum(img2 > threshold_otsu(img2))])]
                    #mean([sum(img1 > 0.9), sum(img2 > 0.9)])] 
                    std(img1)+std(img2)/2.]
       )
    return DataFrame(return_list, columns=['id1','id2','r2diff', 'fftdiff', 'stdavg'])
开发者ID:rhsimplex,项目名称:artsift,代码行数:34,代码来源:art_utils.py

示例11: getBatch_

	def getBatch_(self, indices):
		# format NxCHxWxH
		batchRGB = np.zeros((len(indices), self.CH, self.W, self.H), dtype='float32')
		batchLabel = np.zeros((len(indices), self.W, self.H), dtype='int32')

		k = 0
		for i in indices:
			(rgbname, gtname) = self.flist[i]

			# format: HxWxCH
			rgb =  misc.imread(rgbname)

			if(gtname.endswith('.png')):
				gt = misc.imread(gtname)
			else:
				gt = np.loadtxt(gtname)
			gt = gt.astype('uint8')
		
			if(self.data_transformer is not None):
				rgb = self.data_transformer.transformData(rgb)
				gt = self.data_transformer.transformLabel(gt)
			#^ data_transformer outputs in format HxWxCH

			# convertion from HxWxCH to CHxWxH
			batchRGB[k,:,:,:] = rgb.astype(np.float32).transpose((2,1,0))
			batchLabel[k,:,:] = gt.astype(np.int32).transpose((1,0))

			k += 1

			#ipdb.set_trace()

		if(self.weights_classes_flag):
			return (batchRGB, batchLabel, self.weights_classes)
		else:
			return (batchRGB, batchLabel)
开发者ID:germanRos,项目名称:chainer-deconv,代码行数:35,代码来源:BatchManagerFile.py

示例12: repeated_sales

def repeated_sales(df, artistname, artname, r2thresh=7000, fftr2thresh=10000, IMAGES_DIR='/home/ryan/asi_images/'):
    """
        Takes a dataframe, artistname and artname and tries to decide, via image matching, if there is a repeat sale. Returns a dict of lot_ids, each entry a list of repeat sales
    """
    artdf = df[(df['artistID']==artistname) & (df['artTitle']==artname)]

    artdf.images = artdf.images.apply(getpath)
    paths = artdf[['_id','images']].dropna()
    id_dict = {}
    img_buffer = {}
    already_ordered = []
    for i, path_i in paths.values:
        id_dict[i] = []
        img_buffer[i] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_i), (300,300))))
        for j, path_j in paths[paths._id != i].values:
            if j > i and j not in already_ordered:
                if j not in img_buffer.keys():
                    img_buffer[j] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_j), (300,300))))
                if norm(img_buffer[i] - img_buffer[j]) < r2thresh and\
                        norm(fft2(img_buffer[i]) - fft2(img_buffer[j])) < fftr2thresh:
                    id_dict[i].append(j)
                    already_ordered.append(j)
    for key in id_dict.keys():
        if id_dict[key] == []:
            id_dict.pop(key)
    return id_dict
开发者ID:rhsimplex,项目名称:artsift,代码行数:26,代码来源:art_utils.py

示例13: test_imsave

    def test_imsave(self):
        picdir = os.path.join(datapath, "data")
        for png in glob.iglob(picdir + "/*.png"):
            with suppress_warnings() as sup:
                # PIL causes a Py3k ResourceWarning
                sup.filter(message="unclosed file")
                img = misc.imread(png)
            tmpdir = tempfile.mkdtemp()
            try:
                fn1 = os.path.join(tmpdir, 'test.png')
                fn2 = os.path.join(tmpdir, 'testimg')
                with suppress_warnings() as sup:
                    # PIL causes a Py3k ResourceWarning
                    sup.filter(message="unclosed file")
                    misc.imsave(fn1, img)
                    misc.imsave(fn2, img, 'PNG')

                with suppress_warnings() as sup:
                    # PIL causes a Py3k ResourceWarning
                    sup.filter(message="unclosed file")
                    data1 = misc.imread(fn1)
                    data2 = misc.imread(fn2)
                assert_allclose(data1, img)
                assert_allclose(data2, img)
                assert_equal(data1.shape, img.shape)
                assert_equal(data2.shape, img.shape)
            finally:
                shutil.rmtree(tmpdir)
开发者ID:quanpower,项目名称:scipy,代码行数:28,代码来源:test_pilutil.py

示例14: testsift

def testsift(image1, image2, maxd=1000, distthresh=0.4):
    im1 = imread(image1)
    print im1[:, :]
    im2 = imread(image2)
    print im2.shape
    kdt = [[], [], []]
    d1 = [[], [], []]
    d2 = [[], [], []]
    C = 3
    for channel in range(C):
        if C == 1:
            _, d1[channel] = sift.descriptors(im1, maxd)
        else:
            _, d1[channel] = sift.descriptors(im1[:, :, channel], maxd)
        print channel, d1[channel].shape
        if C == 1:
            _, d2[channel] = sift.descriptors(im2, maxd)
        else:
            _, d2[channel] = sift.descriptors(im2[:, :, channel], maxd)
        print channel, d2[channel].shape
        kdt[channel] = KDTree(d1[channel])
        for desc in d2[channel]:
            dist, index = kdt[channel].query(desc)
            if distthresh >= dist:
                print dist, index
开发者ID:tscnn,项目名称:python-vlfeat,代码行数:25,代码来源:test.py

示例15: match

def match(pic1,pic2):
 
    file1 = Image.open(pic1)
    file2 = Image.open(pic2)
    
   
    #img1 = file1.crop((100, 0, 500, 550))
    img1 = file1.crop((327, 219, 615, 576))
    img1.save("img1.jpg")
   
   # w = file2.size
    #h = file2.size
    #img2 = file2.crop((100, 0, 500, 550))
    img2 = file2.crop((327, 219, 615, 576))
    img2.save("img2.jpg")
   
    # read images as 2D arrays (convert to grayscale for simplicity)
    img1 = to_grayscale(imread("img1.jpg").astype(float))
    img2 = to_grayscale(imread("img2.jpg").astype(float))
    #img1 = to_grayscale(img1.astype(float))
    #img2 = to_grayscale(img2.astype(float))
    
   
    # compare
    n_m, n_0 = compare_images(img1, img2)
    if n_m/img1.size <= 45 and n_0*1.0/img1.size <=45:
        return True
    else:
        return False
开发者ID:orndorffgrant,项目名称:atrakker-rpi,代码行数:29,代码来源:nfctest.py


注:本文中的scipy.misc.imread函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。