当前位置: 首页>>代码示例>>Python>>正文


Python lapack.get_lapack_funcs函数代码示例

本文整理汇总了Python中scipy.linalg.lapack.get_lapack_funcs函数的典型用法代码示例。如果您正苦于以下问题:Python get_lapack_funcs函数的具体用法?Python get_lapack_funcs怎么用?Python get_lapack_funcs使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get_lapack_funcs函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_sycon_hecon

def test_sycon_hecon():
    seed(1234)
    for ind, dtype in enumerate(DTYPES+COMPLEX_DTYPES):
        # DTYPES + COMPLEX DTYPES = <s,d,c,z> sycon + <c,z>hecon
        n = 10
        # For <s,d,c,z>sycon
        if ind < 4:
            func_lwork = get_lapack_funcs('sytrf_lwork', dtype=dtype)
            funcon, functrf = get_lapack_funcs(('sycon', 'sytrf'), dtype=dtype)
            A = (rand(n, n)).astype(dtype)
        # For <c,z>hecon
        else:
            func_lwork = get_lapack_funcs('hetrf_lwork', dtype=dtype)
            funcon, functrf = get_lapack_funcs(('hecon', 'hetrf'), dtype=dtype)
            A = (rand(n, n) + rand(n, n)*1j).astype(dtype)

        # Since sycon only refers to upper/lower part, conj() is safe here.
        A = (A + A.conj().T)/2 + 2*np.eye(n, dtype=dtype)

        anorm = np.linalg.norm(A, 1)
        lwork = _compute_lwork(func_lwork, n)
        ldu, ipiv, _ = functrf(A, lwork=lwork, lower=1)
        rcond, _ = funcon(a=ldu, ipiv=ipiv, anorm=anorm, lower=1)
        # The error is at most 1-fold
        assert_(abs(1/rcond - np.linalg.cond(A, p=1))*rcond < 1)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:25,代码来源:test_lapack.py

示例2: qr_destroy

def qr_destroy(la):
    """
    Return QR decomposition of `la[0]`. Content of `la` gets destroyed in the process.

    Using this function should be less memory intense than calling `scipy.linalg.qr(la[0])`,
    because the memory used in `la[0]` is reclaimed earlier.
    """
    a = numpy.asfortranarray(la[0])
    del la[0], la # now `a` is the only reference to the input matrix
    m, n = a.shape
    # perform q, r = QR(a); code hacked out of scipy.linalg.qr
    logger.debug("computing QR of %s dense matrix" % str(a.shape))
    geqrf, = get_lapack_funcs(('geqrf',), (a,))
    qr, tau, work, info = geqrf(a, lwork=-1, overwrite_a=True)
    qr, tau, work, info = geqrf(a, lwork=work[0], overwrite_a=True)
    del a # free up mem
    assert info >= 0
    r = triu(qr[:n, :n])
    if m < n: # rare case, #features < #topics
        qr = qr[:, :m] # retains fortran order
    gorgqr, = get_lapack_funcs(('orgqr',), (qr,))
    q, work, info = gorgqr(qr, tau, lwork=-1, overwrite_a=True)
    q, work, info = gorgqr(qr, tau, lwork=work[0], overwrite_a=True)
    assert info >= 0, "qr failed"
    assert q.flags.f_contiguous
    return q, r
开发者ID:ArifAhmed1995,项目名称:gensim,代码行数:26,代码来源:matutils.py

示例3: test_gelsd

    def test_gelsd(self):
        for dtype in REAL_DTYPES:
            a1 = np.array([[1.0,2.0],
                          [4.0,5.0],
                          [7.0,8.0]], dtype=dtype)
            b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
            gelsd, gelsd_lwork = get_lapack_funcs(('gelsd','gelsd_lwork'),
                                                  (a1, b1))

            m, n = a1.shape
            if len(b1.shape) == 2:
                nrhs = b1.shape[1]
            else:
                nrhs = 1

            # Request of sizes
            work,iwork,info = gelsd_lwork(m,n,nrhs,-1)
            lwork = int(np.real(work))
            iwork_size = iwork

            x, s, rank, info = gelsd(a1, b1, lwork, iwork_size,
                                    -1, False, False)
            assert_allclose(x[:-1], np.array([-14.333333333333323,
                                            14.999999999999991], dtype=dtype),
                                            rtol=25*np.finfo(dtype).eps)
            assert_allclose(s, np.array([12.596017180511966,
                                         0.583396253199685], dtype=dtype),
                                         rtol=25*np.finfo(dtype).eps)

        for dtype in COMPLEX_DTYPES:
            a1 = np.array([[1.0+4.0j,2.0],
                          [4.0+0.5j,5.0-3.0j],
                          [7.0-2.0j,8.0+0.7j]], dtype=dtype)
            b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
            gelsd, gelsd_lwork = get_lapack_funcs(('gelsd','gelsd_lwork'),
                                                  (a1, b1))

            m, n = a1.shape
            if len(b1.shape) == 2:
                nrhs = b1.shape[1]
            else:
                nrhs = 1

            # Request of sizes
            work, rwork, iwork, info = gelsd_lwork(m,n,nrhs,-1)
            lwork = int(np.real(work))
            rwork_size = int(rwork)
            iwork_size = iwork

            x, s, rank, info = gelsd(a1, b1, lwork, rwork_size, iwork_size,
                                     -1, False, False)
            assert_allclose(x[:-1],
                            np.array([1.161753632288328-1.901075709391912j,
                                      1.735882340522193+1.521240901196909j],
                            dtype=dtype), rtol=25*np.finfo(dtype).eps)
            assert_allclose(s,
                            np.array([13.035514762572043, 4.337666985231382],
                                     dtype=dtype), rtol=25*np.finfo(dtype).eps)
开发者ID:dyao-vu,项目名称:meta-core,代码行数:58,代码来源:test_lapack.py

示例4: multiple_fast_inverse

def multiple_fast_inverse(a):
    """Compute the inverse of a set of arrays.

    Parameters
    ----------
    a: array_like of shape (n_samples, n_dim, n_dim)
        Set of square matrices to be inverted. A is changed in place.

    Returns
    -------
    a: ndarray
       yielding the inverse of the inputs

    Raises
    ------
    LinAlgError :
        If `a` is singular.
    ValueError :
        If `a` is not square, or not 2-dimensional.

    Notes
    -----
    This function is borrowed from scipy.linalg.inv,
    but with some customizations for speed-up.
    """
    if a.shape[1] != a.shape[2]:
        raise ValueError('a must have shape (n_samples, n_dim, n_dim)')
    from scipy.linalg.lapack import get_lapack_funcs
    a1, n = a[0], a.shape[0]
    getrf, getri = get_lapack_funcs(('getrf', 'getri'), (a1,))
    getrf, getri, getri_lwork = get_lapack_funcs(
        ('getrf', 'getri', 'getri_lwork'), (a1,))
    for i in range(n):
        if (getrf.module_name[:7] == 'clapack' and
            getri.module_name[:7] != 'clapack'):
            # ATLAS 3.2.1 has getrf but not getri.
            lu, piv, info = getrf(np.transpose(a[i]), rowmajor=0,
                                  overwrite_a=True)
            a[i] = np.transpose(lu)
        else:
            a[i], piv, info = getrf(a[i], overwrite_a=True)
        if info == 0:
            if getri.module_name[:7] == 'flapack':
                lwork, info_ = getri_lwork(a1.shape[0])
                # XXX: the following line fixes curious SEGFAULT when
                # benchmarking 500x500 matrix inverse. This seems to
                # be a bug in LAPACK ?getri routine because if lwork is
                # minimal (when using lwork[0] instead of lwork[1]) then
                # all tests pass. Further investigation is required if
                # more such SEGFAULTs occur.
                lwork = int(1.01 * lwork.real)
                a[i], _ = getri(a[i], piv, lwork=lwork, overwrite_lu=1)
            else:  # clapack
                a[i], _ = getri(a[i], piv, overwrite_lu=1)
        else:
            raise ValueError('Matrix LU decomposition failed')
    return a
开发者ID:alpinho,项目名称:nistats,代码行数:57,代码来源:utils.py

示例5: test_ormrz_unmrz

def test_ormrz_unmrz():
    """
    This test performs a matrix multiplication with an arbitrary m x n matric C
    and a unitary matrix Q without explicitly forming the array. The array data
    is encoded in the rectangular part of A which is obtained from ?TZRZF. Q
    size is inferred by m, n, side keywords.
    """
    seed(1234)
    qm, qn, cn = 10, 15, 15
    for ind, dtype in enumerate(DTYPES):
        tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
                                           dtype=dtype)
        lwork_rz = _compute_lwork(tzrzf_lw, qm, qn)

        if ind < 2:
            A = triu(rand(qm, qn).astype(dtype))
            C = rand(cn, cn).astype(dtype)
            orun_mrz, orun_mrz_lw = get_lapack_funcs(('ormrz', 'ormrz_lwork'),
                                                     dtype=dtype)
        else:
            A = triu((rand(qm, qn) + rand(qm, qn)*1j).astype(dtype))
            C = (rand(cn, cn) + rand(cn, cn)*1j).astype(dtype)
            orun_mrz, orun_mrz_lw = get_lapack_funcs(('unmrz', 'unmrz_lwork'),
                                                     dtype=dtype)

        lwork_mrz = _compute_lwork(orun_mrz_lw, cn, cn)
        rz, tau, info = tzrzf(A, lwork=lwork_rz)

        # Get Q manually for comparison
        V = np.hstack((np.eye(qm, dtype=dtype), rz[:, qm:]))
        Id = np.eye(qn, dtype=dtype)
        ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(qm)]
        Q = reduce(np.dot, ref)

        # Now that we have Q, we can test whether lapack results agree with
        # each case of CQ, CQ^H, QC, and QC^H
        trans = 'T' if ind < 2 else 'C'
        tol = 10*np.spacing(dtype(1.0).real)

        cq, info = orun_mrz(rz, tau, C, lwork=lwork_mrz)
        assert_(info == 0)
        assert_allclose(cq - Q.dot(C), zeros_like(C), atol=tol, rtol=0.)

        cq, info = orun_mrz(rz, tau, C, trans=trans, lwork=lwork_mrz)
        assert_(info == 0)
        assert_allclose(cq - Q.conj().T.dot(C), zeros_like(C), atol=tol,
                        rtol=0.)

        cq, info = orun_mrz(rz, tau, C, side='R', lwork=lwork_mrz)
        assert_(info == 0)
        assert_allclose(cq - C.dot(Q), zeros_like(C), atol=tol, rtol=0.)

        cq, info = orun_mrz(rz, tau, C, side='R', trans=trans, lwork=lwork_mrz)
        assert_(info == 0)
        assert_allclose(cq - C.dot(Q.conj().T), zeros_like(C), atol=tol,
                        rtol=0.)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:56,代码来源:test_lapack.py

示例6: test_gelsy

    def test_gelsy(self):

        for dtype in REAL_DTYPES:
            a1 = np.array([[1.0, 2.0],
                          [4.0, 5.0],
                          [7.0, 8.0]], dtype=dtype)
            b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
            gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
                                                  (a1, b1))

            m, n = a1.shape
            if len(b1.shape) == 2:
                nrhs = b1.shape[1]
            else:
                nrhs = 1

            # Request of sizes
            work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
            lwork = int(np.real(work))

            jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
            v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
                                        lwork, False, False)
            assert_allclose(x[:-1], np.array([-14.333333333333323,
                                             14.999999999999991], dtype=dtype),
                            rtol=25*np.finfo(dtype).eps)

        for dtype in COMPLEX_DTYPES:
            a1 = np.array([[1.0+4.0j, 2.0],
                          [4.0+0.5j, 5.0-3.0j],
                          [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
            b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
            gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
                                                  (a1, b1))

            m, n = a1.shape
            if len(b1.shape) == 2:
                nrhs = b1.shape[1]
            else:
                nrhs = 1

            # Request of sizes
            work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
            lwork = int(np.real(work))

            jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
            v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
                                        lwork, False, False)
            assert_allclose(x[:-1],
                            np.array([1.161753632288328-1.901075709391912j,
                                      1.735882340522193+1.521240901196909j],
                                     dtype=dtype),
                            rtol=25*np.finfo(dtype).eps)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:53,代码来源:test_lapack.py

示例7: test_gels

    def test_gels(self):
        for dtype in REAL_DTYPES:
            a1 = np.array([[1.0, 2.0],
                          [4.0, 5.0],
                          [7.0, 8.0]], dtype=dtype)
            b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
            gels, gels_lwork, geqrf = get_lapack_funcs(
                    ('gels', 'gels_lwork', 'geqrf'), (a1, b1))

            m, n = a1.shape
            if len(b1.shape) == 2:
                nrhs = b1.shape[1]
            else:
                nrhs = 1

            # Request of sizes
            lwork = _compute_lwork(gels_lwork, m, n, nrhs)

            lqr, x, info = gels(a1, b1, lwork=lwork)
            assert_allclose(x[:-1], np.array([-14.333333333333323,
                                              14.999999999999991],
                                             dtype=dtype),
                            rtol=25*np.finfo(dtype).eps)
            lqr_truth, _, _, _ = geqrf(a1)
            assert_array_equal(lqr, lqr_truth)

        for dtype in COMPLEX_DTYPES:
            a1 = np.array([[1.0+4.0j, 2.0],
                          [4.0+0.5j, 5.0-3.0j],
                          [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
            b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
            gels, gels_lwork, geqrf = get_lapack_funcs(
                    ('gels', 'gels_lwork', 'geqrf'), (a1, b1))

            m, n = a1.shape
            if len(b1.shape) == 2:
                nrhs = b1.shape[1]
            else:
                nrhs = 1

            # Request of sizes
            lwork = _compute_lwork(gels_lwork, m, n, nrhs)

            lqr, x, info = gels(a1, b1, lwork=lwork)
            assert_allclose(x[:-1],
                            np.array([1.161753632288328-1.901075709391912j,
                                      1.735882340522193+1.521240901196909j],
                            dtype=dtype), rtol=25*np.finfo(dtype).eps)
            lqr_truth, _, _, _ = geqrf(a1)
            assert_array_equal(lqr, lqr_truth)
开发者ID:alpaco42,项目名称:ML_Spring_2018,代码行数:50,代码来源:test_lapack.py

示例8: test_sing_val_update

    def test_sing_val_update(self):

        sigmas = np.array([4., 3., 2., 0])
        m_vec = np.array([3.12, 5.7, -4.8, -2.2])

        M = np.hstack((np.vstack((np.diag(sigmas[0:-1]),
                        np.zeros((1,len(m_vec) - 1)))), m_vec[:, np.newaxis]))
        SM = svd(M, full_matrices=False, compute_uv=False, overwrite_a=False,
                 check_finite=False)

        it_len = len(sigmas)
        sgm = np.concatenate((sigmas[::-1], (sigmas[0] +
                              it_len*np.sqrt(np.sum(np.power(m_vec,2))),)))
        mvc = np.concatenate((m_vec[::-1], (0,)))

        lasd4 = get_lapack_funcs('lasd4',(sigmas,))

        roots = []
        for i in range(0, it_len):
            res = lasd4(i, sgm, mvc)
            roots.append(res[1])

            assert_((res[3] <= 0),"LAPACK root finding dlasd4 failed to find \
                                    the singular value %i" % i)
        roots = np.array(roots)[::-1]

        assert_((not np.any(np.isnan(roots)),"There are NaN roots"))
        assert_allclose(SM, roots, atol=100*np.finfo(np.float64).eps,
                        rtol=100*np.finfo(np.float64).eps)
开发者ID:dyao-vu,项目名称:meta-core,代码行数:29,代码来源:test_lapack.py

示例9: test_pftrs

def test_pftrs():
    """
    Test Cholesky factorization of a positive definite Rectengular Full
    Packed (RFP) format array and solve a linear system
    """
    seed(1234)
    for ind, dtype in enumerate(DTYPES):
        n = 20
        if ind > 1:
            A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
            A = A + A.conj().T + n*eye(n)
        else:
            A = (rand(n, n)).astype(dtype)
            A = A + A.T + n*eye(n)

        B = ones((n, 3), dtype=dtype)
        Bf1 = ones((n+2, 3), dtype=dtype)
        Bf2 = ones((n-2, 3), dtype=dtype)
        pftrs, pftrf, trttf, tfttr = get_lapack_funcs(('pftrs',
                                                       'pftrf',
                                                       'trttf',
                                                       'tfttr'),
                                                      dtype=dtype)

        # Get the original array from TP
        Afp, info = trttf(A)
        A_chol_rfp, info = pftrf(n, Afp)
        # larger B arrays shouldn't segfault
        soln, info = pftrs(n, A_chol_rfp, Bf1)
        assert_(info == 0)
        assert_raises(Exception, pftrs, n, A_chol_rfp, Bf2)
        soln, info = pftrs(n, A_chol_rfp, B)
        assert_(info == 0)
        assert_array_almost_equal(solve(A, B), soln,
                                  decimal=4 if ind % 2 == 0 else 6)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:35,代码来源:test_lapack.py

示例10: test_pftri

def test_pftri():
    """
    Test Cholesky factorization of a positive definite Rectengular Full
    Packed (RFP) format array to find its inverse
    """
    seed(1234)
    for ind, dtype in enumerate(DTYPES):
        n = 20
        if ind > 1:
            A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
            A = A + A.conj().T + n*eye(n)
        else:
            A = (rand(n, n)).astype(dtype)
            A = A + A.T + n*eye(n)

        pftri, pftrf, trttf, tfttr = get_lapack_funcs(('pftri',
                                                       'pftrf',
                                                       'trttf',
                                                       'tfttr'),
                                                      dtype=dtype)

        # Get the original array from TP
        Afp, info = trttf(A)
        A_chol_rfp, info = pftrf(n, Afp)
        A_inv_rfp, info = pftri(n, A_chol_rfp)
        assert_(info == 0)
        A_inv_r, _ = tfttr(n, A_inv_rfp)
        Ainv = inv(A)
        assert_array_almost_equal(A_inv_r, triu(Ainv),
                                  decimal=4 if ind % 2 == 0 else 6)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:30,代码来源:test_lapack.py

示例11: _expm_multiply_simple_core

def _expm_multiply_simple_core(A, B, t, mu, m_star, s, tol=None, balance=False):
    """
    A helper function.

    This is similar to algorithm 3.2 except with some values
    having been pre-calculated, including mu, m_star, and s.

    """
    if balance:
        raise NotImplementedError
    if tol is None:
        u_d = 2 ** -53
        tol = u_d

    # Get the lapack function for computing matrix norms.
    lange, = get_lapack_funcs(('lange',), (B,))

    F = B
    eta = np.exp(t*mu / float(s))
    for i in range(s):
        #c1 = exact_inf_norm(B)
        c1 = lange('i', B)
        for j in range(m_star):
            coeff = t / float(s*(j+1))
            B = coeff * A.dot(B)
            #c2 = exact_inf_norm(B)
            c2 = lange('i', B)
            F = F + B
            #if c1 + c2 <= tol * exact_inf_norm(F):
            if c1 + c2 <= tol * lange('i', F):
                break
            c1 = c2
        F = eta * F
        B = F
    return F
开发者ID:argriffing,项目名称:jsonctmctree,代码行数:35,代码来源:_expm_multiply.py

示例12: _geneig

def _geneig(a1, b1, left=False, right=True, overwrite_a=False, overwrite_b=False, return_ab=True):
    ggev, = get_lapack_funcs(("ggev",), (a1, b1))
    cvl, cvr = left, right
    res = ggev(a1, b1, lwork=-1)
    lwork = res[-2][0].real.astype(numpy.int)
    if ggev.typecode in "cz":
        alpha, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr, lwork, overwrite_a, overwrite_b)
        w = alpha / beta
    else:
        alphar, alphai, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr, lwork, overwrite_a, overwrite_b)
        w = (alphar + _I * alphai) / beta
        alpha = alphar + _I * alphai
    if info < 0:
        raise ValueError("illegal value in %d-th argument of internal ggev" % -info)
    if info > 0:
        raise LinAlgError("generalized eig algorithm did not converge (info=%d)" % info)

    only_real = numpy.logical_and.reduce(numpy.equal(w.imag, 0.0))
    if not (ggev.typecode in "cz" or only_real):
        t = w.dtype.char
        if left:
            vl = _make_complex_eigvecs(w, vl, t)
        if right:
            vr = _make_complex_eigvecs(w, vr, t)
    if not (left or right):
        return w
    if left:
        if right:
            return w, vl, vr
        return w, vl

    if return_ab:
        return alpha, beta, w, vr

    return w, vr
开发者ID:schwancr,项目名称:schwancr_bin,代码行数:35,代码来源:geneig.py

示例13: test_trsyl

    def test_trsyl(self):
        a = np.array([[1, 2], [0, 4]])
        b = np.array([[5, 6], [0, 8]])
        c = np.array([[9, 10], [11, 12]])
        trans = 'T'

        # Test single and double implementations, including most
        # of the options
        for dtype in 'fdFD':
            a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype)
            trsyl, = get_lapack_funcs(('trsyl',), (a1,))
            if dtype.isupper():  # is complex dtype
                a1[0] += 1j
                trans = 'C'

            x, scale, info = trsyl(a1, b1, c1)
            assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1),
                                      scale * c1)

            x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans)
            assert_array_almost_equal(
                    np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T),
                    scale * c1, decimal=4)

            x, scale, info = trsyl(a1, b1, c1, isgn=-1)
            assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1),
                                      scale * c1, decimal=4)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:27,代码来源:test_lapack.py

示例14: test_sfrk_hfrk

def test_sfrk_hfrk():
    """
    Test for performing a symmetric rank-k operation for matrix in RFP format.
    """
    seed(1234)
    for ind, dtype in enumerate(DTYPES):
        n = 20
        if ind > 1:
            A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
            A = A + A.conj().T + n*eye(n)
        else:
            A = (rand(n, n)).astype(dtype)
            A = A + A.T + n*eye(n)

        prefix = 's'if ind < 2 else 'h'
        trttf, tfttr, shfrk = get_lapack_funcs(('trttf', 'tfttr', '{}frk'
                                                ''.format(prefix)),
                                               dtype=dtype)

        Afp, _ = trttf(A)
        C = np.random.rand(n, 2).astype(dtype)
        Afp_out = shfrk(n, 2, -1, C, 2, Afp)
        A_out, _ = tfttr(n, Afp_out)
        assert_array_almost_equal(A_out, triu(-C.dot(C.conj().T) + 2*A),
                                  decimal=4 if ind % 2 == 0 else 6)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:25,代码来源:test_lapack.py

示例15: test_tzrzf

def test_tzrzf():
    """
    This test performs an RZ decomposition in which an m x n upper trapezoidal
    array M (m <= n) is factorized as M = [R 0] * Z where R is upper triangular
    and Z is unitary.
    """
    seed(1234)
    m, n = 10, 15
    for ind, dtype in enumerate(DTYPES):
        tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
                                           dtype=dtype)
        lwork = _compute_lwork(tzrzf_lw, m, n)

        if ind < 2:
            A = triu(rand(m, n).astype(dtype))
        else:
            A = triu((rand(m, n) + rand(m, n)*1j).astype(dtype))

        # assert wrong shape arg, f2py returns generic error
        assert_raises(Exception, tzrzf, A.T)
        rz, tau, info = tzrzf(A, lwork=lwork)
        # Check success
        assert_(info == 0)

        # Get Z manually for comparison
        R = np.hstack((rz[:, :m], np.zeros((m, n-m), dtype=dtype)))
        V = np.hstack((np.eye(m, dtype=dtype), rz[:, m:]))
        Id = np.eye(n, dtype=dtype)
        ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(m)]
        Z = reduce(np.dot, ref)
        assert_allclose(R.dot(Z) - A, zeros_like(A, dtype=dtype),
                        atol=10*np.spacing(dtype(1.0).real), rtol=0.)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:32,代码来源:test_lapack.py


注:本文中的scipy.linalg.lapack.get_lapack_funcs函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。