本文整理汇总了Python中scipy.linalg.solveh_banded函数的典型用法代码示例。如果您正苦于以下问题:Python solveh_banded函数的具体用法?Python solveh_banded怎么用?Python solveh_banded使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了solveh_banded函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: minimize_Z_EL_cython
def minimize_Z_EL_cython(A, l1, l2, rho):
""""""
# build banded matrix:
n = len(A)
Bmat = numpy.zeros((2,n))
Bmat[0,:] = -2*l2/rho
Bmat[1,1:n-1] = 1 +4*l2/rho
Bmat[1,0] = Bmat[1,n-1] = 1 + 2*l2/rho
# convert A into an array:
A_ = numpy.zeros((len(A), A[0].shape[0], A[0].shape[0]))
for i in range(len(A)):
A_[i,:,:] = A[i]
sudoZ = A_[:]
for i in range(A[0].shape[0]):
for j in range(i, A[0].shape[0]):
resp = A_[:,i,j]
# get LS solution:
beta_hat = solveh_banded(Bmat, resp, overwrite_ab=True, overwrite_b=True)
# shooting algorithm:
beta_hat = Z_shooting.Z_shooting(B=beta_hat, y=resp, l1=l1, l2=l2, tol=0.1, max_iter=100)
sudoZ[:,i,j] = beta_hat
sudoZ[:,j,i] = beta_hat
# return to a list (terribly inefficient! I have to change this!)
Z_ = [None] * len(A)
for i in range(len(A)):
Z_[i] = sudoZ[i,:,:]
return Z_
示例2: fit
def fit(self, y, x=None, weights=None, pen=0.):
banded = True
if x is None:
x = self.tau[(self.M-1):-(self.M-1)] # internal knots
if pen == 0.: # can't use cholesky for singular matrices
banded = False
if x.shape != y.shape:
raise ValueError, 'x and y shape do not agree, by default x are the Bspline\'s internal knots'
bt = self.basis(x)
if pen >= self.penmax:
pen = self.penmax
if weights is None:
weights = N.array(1.)
wmean = weights.mean()
_w = N.sqrt(weights / wmean)
bt *= _w
# throw out rows with zeros (this happens at boundary points!)
mask = N.flatnonzero(1 - N.alltrue(N.equal(bt, 0), axis=0))
bt = bt[:, mask]
y = y[mask]
self.df_total = y.shape[0]
if bt.shape[1] != y.shape[0]:
raise ValueError, "some x values are outside range of B-spline knots"
bty = N.dot(bt, _w * y)
self.N = y.shape[0]
if not banded:
self.btb = N.dot(bt, bt.T)
_g = _band2array(self.g, lower=1, symmetric=True)
self.coef, _, self.rank = L.lstsq(self.btb + pen*_g, bty)[0:3]
self.rank = min(self.rank, self.btb.shape[0])
else:
self.btb = N.zeros(self.g.shape, N.float64)
nband, nbasis = self.g.shape
for i in range(nbasis):
for k in range(min(nband, nbasis-i)):
self.btb[k, i] = (bt[i] * bt[i+k]).sum()
bty.shape = (1, bty.shape[0])
self.chol, self.coef = solveh_banded(self.btb +
pen*self.g,
bty, lower=1)
self.coef = N.squeeze(self.coef)
self.resid = N.sqrt(wmean) * (y * _w - N.dot(self.coef, bt))
self.pen = pen
示例3: test_01_float32
def test_01_float32(self):
# Solve
# [ 4 1 0] [1]
# [ 1 4 1] X = [4]
# [ 0 1 4] [1]
#
ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]], dtype=float32)
b = array([1.0, 4.0, 1.0], dtype=float32)
x = solveh_banded(ab, b)
assert_array_almost_equal(x, [0.0, 1.0, 0.0])
示例4: test_check_finite
def test_check_finite(self):
# Solve
# [ 4 1 0] [1]
# [ 1 4 1] X = [4]
# [ 0 1 4] [1]
# with the RHS as a 1D array.
ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]])
b = array([1.0, 4.0, 1.0])
x = solveh_banded(ab, b, check_finite=False)
assert_array_almost_equal(x, [0.0, 1.0, 0.0])
示例5: test_01_complex
def test_01_complex(self):
# Solve
# [ 4 -j 0] [ -j]
# [ j 4 -j] X = [4-j]
# [ 0 j 4] [4+j]
#
ab = array([[-99, -1.0j, -1.0j], [4.0, 4.0, 4.0]])
b = array([-1.0j, 4.0-1j, 4+1j])
x = solveh_banded(ab, b)
assert_array_almost_equal(x, [0.0, 1.0, 1.0])
示例6: test_01_upper
def test_01_upper(self):
# Solve
# [ 4 1 0] [1]
# [ 1 4 1] X = [4]
# [ 0 1 4] [1]
# with the RHS as a 1D array.
ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]])
b = array([1.0, 4.0, 1.0])
x = solveh_banded(ab, b)
assert_array_almost_equal(x, [0.0, 1.0, 0.0])
示例7: test_tridiag_01_lower
def test_tridiag_01_lower(self):
# Solve
# [ 4 1 0] [1]
# [ 1 4 1] X = [4]
# [ 0 1 4] [1]
#
ab = array([[4.0, 4.0, 4.0], [1.0, 1.0, -99]])
b = array([1.0, 4.0, 1.0])
x = solveh_banded(ab, b, lower=True)
assert_array_almost_equal(x, [0.0, 1.0, 0.0])
示例8: test_03_upper
def test_03_upper(self):
# Solve
# [ 4 1 0] [1]
# [ 1 4 1] X = [4]
# [ 0 1 4] [1]
# with the RHS as a 2D array with shape (3,1).
ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]])
b = array([1.0, 4.0, 1.0]).reshape(-1,1)
x = solveh_banded(ab, b)
assert_array_almost_equal(x, array([0.0, 1.0, 0.0]).reshape(-1,1))
示例9: timestep
def timestep(self, input_signal, output_condition=0,
curr_noise=0, sub_noise=0, cond_noise=0):
"""
Compute the time evolution for one timestep using increments of
the driving noise (current, subunit or conductance or a mixture)
and the corresponding input signal at the soma. The output as an
outflux current can also be specified.
Note that the noise has to be initialized outside the class in
order to be able to compare models for given trajectories of the
noise. Shape of the noise has to be
curr_noise.shape = (N_axon+1, M)
sub_noise.shape = (3, N_axon+1, M)
cond_noise.shape = (11, N_axon+1, M)
"""
[v, m, h, n] = self.state.copy()
# Explicit Euler(-Maruyama) step for gating variables
self.state[1] += self.dt * self.t_m(v) * (self.m_inf(v)-m)
self.state[2] += self.dt * self.t_h(v) * (self.h_inf(v)-h)
self.state[3] += self.dt * self.t_n(v) * (self.n_inf(v)-n)
# If subunit noise is switched on
if np.max(self.sigma_sub):
N = self.N_axon + 1
self.state[1][:N, :] += (np.sqrt(self.alpha_m(v[:N, :]) *
(1-m[:N, :]) + self.beta_m(v[:N, :]) * m[:N, :]) *
self.sigma_sub[0] * sub_noise[0])
self.state[2][:N, :] += (np.sqrt(self.alpha_h(v[:N, :]) *
(1-h[:N, :]) + self.beta_h(v[:N, :]) * h[:N, :]) *
self.sigma_sub[1] * sub_noise[1])
self.state[3][:N, :] += (np.sqrt(self.alpha_n(v[:N, :]) *
(1-n[:N, :]) + self.beta_n(v[:N, :]) * n[:N, :]) *
self.sigma_sub[2] * sub_noise[2])
# Respect boundaries!
for i in xrange(3):
self.state[i][self.state[i]>1] = 1
self.state[i][self.state[i]<0] = 0
# Semi-implicit Euler step for voltage variable
rhs = v - self.dt*self.fv(v, m, h, n)
rhs[:self.N_axon+1, :] += self.sigma_curr*curr_noise
# If conductance noise is switched on
if self.sigma_cond:
rhs[:self.N_axon+1,:] -= self.compute_cond_noise(cond_noise)
# Input signal as Neumann boundary condition for left axon endpoint
rhs[0] += self.boundary * input_signal
# Output condition as Neumann boundary condition for right axon endpoint
rhs[-1] += self.boundary * output_condition
# Modification of RHS to make discrete Neumann Laplacian symmetric
rhs[0] *= 0.5
rhs[-1] *= 0.5
# Solve the linear problem
self.state[0] = lng.solveh_banded(self.bandedmatrix, rhs,
check_finite=False)
# Update state
#self.state = [v_neu, m_neu, h_neu, n_neu]
self.time_elapsed += self.dt
示例10: test_01_complex
def test_01_complex(self):
# Solve
# [ 4 -j 2 0] [2-j]
# [ j 4 -j 2] X = [4-j]
# [ 2 j 4 -j] [4+j]
# [ 0 2 j 4] [2+j]
#
ab = array([[0.0, 0.0, 2.0, 2.0], [-99, -1.0j, -1.0j, -1.0j], [4.0, 4.0, 4.0, 4.0]])
b = array([2 - 1.0j, 4.0 - 1j, 4 + 1j, 2 + 1j])
x = solveh_banded(ab, b)
assert_array_almost_equal(x, [0.0, 1.0, 1.0, 0.0])
示例11: test_tridiag_02_lower
def test_tridiag_02_lower(self):
# Solve
# [ 4 1 0] [1 4]
# [ 1 4 1] X = [4 2]
# [ 0 1 4] [1 4]
#
ab = array([[4.0, 4.0, 4.0], [1.0, 1.0, -99]])
b = array([[1.0, 4.0], [4.0, 2.0], [1.0, 4.0]])
x = solveh_banded(ab, b, lower=True)
expected = array([[0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])
assert_array_almost_equal(x, expected)
示例12: test_01_lower
def test_01_lower(self):
# Solve
# [ 4 1 2 0] [1]
# [ 1 4 1 2] X = [4]
# [ 2 1 4 1] [1]
# [ 0 2 1 4] [2]
#
ab = array([[4.0, 4.0, 4.0, 4.0], [1.0, 1.0, 1.0, -99], [2.0, 2.0, 0.0, 0.0]])
b = array([1.0, 4.0, 1.0, 2.0])
x = solveh_banded(ab, b, lower=True)
assert_array_almost_equal(x, [0.0, 1.0, 0.0, 0.0])
示例13: test_01_float32
def test_01_float32(self):
warnings.simplefilter("ignore", category=DeprecationWarning)
# Solve
# [ 4 1 0] [1]
# [ 1 4 1] X = [4]
# [ 0 1 4] [1]
#
ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]], dtype=float32)
b = array([1.0, 4.0, 1.0], dtype=float32)
c, x = solveh_banded(ab, b)
assert_array_almost_equal(x, [0.0, 1.0, 0.0])
示例14: test_01_complex
def test_01_complex(self):
warnings.simplefilter("ignore", category=DeprecationWarning)
# Solve
# [ 4 -j 0] [ -j]
# [ j 4 -j] X = [4-j]
# [ 0 j 4] [4+j]
#
ab = array([[-99, -1.0j, -1.0j], [4.0, 4.0, 4.0]])
b = array([-1.0j, 4.0 - 1j, 4 + 1j])
c, x = solveh_banded(ab, b)
assert_array_almost_equal(x, [0.0, 1.0, 1.0])
示例15: test_03_upper
def test_03_upper(self):
warnings.simplefilter("ignore", category=DeprecationWarning)
# Solve
# [ 4 1 0] [1]
# [ 1 4 1] X = [4]
# [ 0 1 4] [1]
# with the RHS as a 2D array with shape (3,1).
ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]])
b = array([1.0, 4.0, 1.0]).reshape(-1, 1)
c, x = solveh_banded(ab, b)
assert_array_almost_equal(x, array([0.0, 1.0, 0.0]).reshape(-1, 1))