当前位置: 首页>>代码示例>>Python>>正文


Python fitpack2.SmoothBivariateSpline类代码示例

本文整理汇总了Python中scipy.interpolate.fitpack2.SmoothBivariateSpline的典型用法代码示例。如果您正苦于以下问题:Python SmoothBivariateSpline类的具体用法?Python SmoothBivariateSpline怎么用?Python SmoothBivariateSpline使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了SmoothBivariateSpline类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_integral

    def test_integral(self):
        x = [1,1,1,2,2,2,4,4,4]
        y = [1,2,3,1,2,3,1,2,3]
        z = array([0,7,8,3,4,7,1,3,4])

        warn_ctx = WarningManager()
        warn_ctx.__enter__()
        try:
            # This seems to fail (ier=1, see ticket 1642).
            warnings.simplefilter('ignore', UserWarning)
            lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)
        finally:
            warn_ctx.__exit__()

        tx = [1,2,4]
        ty = [1,2,3]

        tz = lut(tx, ty)
        trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)

        lut2 = SmoothBivariateSpline(x, y, z, kx=2, ky=2, s=0)
        assert_almost_equal(lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz,
                            decimal=0)  # the quadratures give 23.75 and 23.85

        tz = lut(tx[:-1], ty[:-1])
        trpz = .25*(diff(tx[:-1])[:,None]*diff(ty[:-1])[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz)
开发者ID:NelleV,项目名称:scipy,代码行数:30,代码来源:test_fitpack2.py

示例2: test_integral

    def test_integral(self):
        x = [1,1,1,2,2,2,4,4,4]
        y = [1,2,3,1,2,3,1,2,3]
        z = array([0,7,8,3,4,7,1,3,4])

        with suppress_warnings() as sup:
            # This seems to fail (ier=1, see ticket 1642).
            sup.filter(UserWarning, "\nThe required storage space")
            lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)

        tx = [1,2,4]
        ty = [1,2,3]

        tz = lut(tx, ty)
        trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)

        lut2 = SmoothBivariateSpline(x, y, z, kx=2, ky=2, s=0)
        assert_almost_equal(lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz,
                            decimal=0)  # the quadratures give 23.75 and 23.85

        tz = lut(tx[:-1], ty[:-1])
        trpz = .25*(diff(tx[:-1])[:,None]*diff(ty[:-1])[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz)
开发者ID:BranYang,项目名称:scipy,代码行数:26,代码来源:test_fitpack2.py

示例3: test_integral

    def test_integral(self):
        x = [1, 1, 1, 2, 2, 2, 4, 4, 4]
        y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
        z = array([0, 7, 8, 3, 4, 7, 1, 3, 4])

        lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)
        tx = [1, 2, 4]
        ty = [1, 2, 3]

        tz = lut(tx, ty)
        trpz = (
            0.25
            * (diff(tx)[:, None] * diff(ty)[None, :] * (tz[:-1, :-1] + tz[1:, :-1] + tz[:-1, 1:] + tz[1:, 1:])).sum()
        )
        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)

        lut2 = SmoothBivariateSpline(x, y, z, kx=2, ky=2, s=0)
        assert_almost_equal(
            lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz, decimal=0
        )  # the quadratures give 23.75 and 23.85

        tz = lut(tx[:-1], ty[:-1])
        trpz = (
            0.25
            * (
                diff(tx[:-1])[:, None]
                * diff(ty[:-1])[None, :]
                * (tz[:-1, :-1] + tz[1:, :-1] + tz[:-1, 1:] + tz[1:, 1:])
            ).sum()
        )
        assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz)
开发者ID:dwcrandell,项目名称:GeneDesigner,代码行数:31,代码来源:test_fitpack.py

示例4: test_linear_1d

 def test_linear_1d(self):
     x = [1,1,1,2,2,2,3,3,3]
     y = [1,2,3,1,2,3,1,2,3]
     z = [0,0,0,2,2,2,4,4,4]
     lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1)
     assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3]))
     assert_array_almost_equal(lut.get_coeffs(),[0,0,4,4])
     assert_almost_equal(lut.get_residual(),0.0)
     assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[0,0],[1,1],[2,2]])
开发者ID:NelleV,项目名称:scipy,代码行数:9,代码来源:test_fitpack2.py


注:本文中的scipy.interpolate.fitpack2.SmoothBivariateSpline类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。