当前位置: 首页>>代码示例>>Python>>正文


Python UnivariateSpline.integral_2方法代码示例

本文整理汇总了Python中scipy.interpolate.UnivariateSpline.integral_2方法的典型用法代码示例。如果您正苦于以下问题:Python UnivariateSpline.integral_2方法的具体用法?Python UnivariateSpline.integral_2怎么用?Python UnivariateSpline.integral_2使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.interpolate.UnivariateSpline的用法示例。


在下文中一共展示了UnivariateSpline.integral_2方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: len

# 需要导入模块: from scipy.interpolate import UnivariateSpline [as 别名]
# 或者: from scipy.interpolate.UnivariateSpline import integral_2 [as 别名]
        curr_data = np.concatenate([curr_data, np.zeros((3,num_params))])

    time = np.arange(0, len(curr_data), 1) # the sample 'times' (0 to number of samples)

    acc_X = curr_data[:,0]
    acc_Y = curr_data[:,1]
    acc_Z = curr_data[:,2]

    # fit 2nd the antiderivative

    # the interpolation representation
    tck_X = UnivariateSpline(time, acc_X, s=0)

    # integrals
    tck_X.integral = tck_X.antiderivative()
    tck_X.integral_2 = tck_X.antiderivative(2)

    # the interpolation representation
    tck_Y = UnivariateSpline(time, acc_Y, s=0)

    # integrals
    tck_Y.integral = tck_Y.antiderivative()
    tck_Y.integral_2 = tck_Y.antiderivative(2)

    # the interpolation representation
    tck_Z = UnivariateSpline(time, acc_Z, s=0)

    # integrals
    tck_Z.integral = tck_Z.antiderivative()
    tck_Z.integral_2 = tck_Z.antiderivative(2)
开发者ID:galenwilkerson,项目名称:Handwriting-Recognition-using-acceleration-data,代码行数:32,代码来源:draw_letters.py

示例2: preprocess

# 需要导入模块: from scipy.interpolate import UnivariateSpline [as 别名]
# 或者: from scipy.interpolate.UnivariateSpline import integral_2 [as 别名]

#.........这里部分代码省略.........

		# for each parameter (accelX, accelY, ...)

                # map the unicode character to int
                curr_stroke_val = stroke_dict[data1[i][0]]
                                        
                #print(len(curr_stroke))
                #print(curr_stroke[0])
                #print(curr_stroke[1])

		curr_data = data1[i][1]

                # fix if too short for interpolation - pad current data with 3 zeros
                if(len(curr_data) <= 3):
                        curr_data = np.concatenate([curr_data, np.zeros((3,num_params))])

		time = np.arange(0, len(curr_data), 1) # the sample 'times' (0 to number of samples)
		time_new = np.arange(0, len(curr_data), float(len(curr_data))/num_resamplings) # the resampled time points

		for j in range(0, num_params): # iterate through parameters

			signal = curr_data[:,j] # one signal (accelx, etc.) to interpolate
			# interpolate the signal using a spline or so, so that arbitrary points can be used 
			# (~30 seems reasonable based on data, for example)
                        
			#tck = interpolate.splrep(time, signal, s=0)  # the interpolation represenation
                        tck = UnivariateSpline(time, signal, s=0)

			# sample the interpolation num_resamplings times to get values
                        # resampled_data = interpolate.splev(time_new, tck, der=0) # the resampled data
                        resampled_data = tck(time_new)

                        # scale data (center, norm)
                        resampled_data = preprocessing.scale(resampled_data)
                        
                        # first integral
                        tck.integral = tck.antiderivative()
                        resampled_data_integral = tck.integral(time_new)

                        # scale data (center, norm)
                        resampled_data_integral = preprocessing.scale(resampled_data_integral)

                        # 2nd integral
                        tck.integral_2 = tck.antiderivative(2)
                        resampled_data_integral_2 = tck.integral_2(time_new)

                        # scale data (center, norm)
                        resampled_data_integral_2 = preprocessing.scale(resampled_data_integral_2)

                        # first deriv
                        tck.deriv = tck.derivative()
                        resampled_data_deriv = tck.deriv(time_new)

                        # scale
                        resampled_data_deriv = preprocessing.scale(resampled_data_deriv)

                        # second deriv
                        tck.deriv_2 = tck.derivative(2)
                        resampled_data_deriv_2 = tck.deriv_2(time_new)

                        #scale
                        resampled_data_deriv_2 = preprocessing.scale(resampled_data_deriv_2)


                        # concatenate into one vector
                        concatenated_resampled_data = np.concatenate((resampled_data, 
                                                                      resampled_data_integral, 
                                                                      resampled_data_integral_2, 
                                                                      resampled_data_deriv, 
                                                                      resampled_data_deriv_2))
                        
                        # store for the correct parameter, to be used later as part of inputs to SVM
 			X_matrix[j] = concatenated_resampled_data

			# while we're at it, square vector of resampled data to get a matrix, vectorize the matrix, and store
			#  for each X in list, multiply X by itself -> X_2
			#- vectorize X^2 (e.g. 10 x 10 -> 100 dimensions)
#			X_2_matrix = np.outer(concatenated_resampled_data, concatenated_resampled_data) # temp matrix for outer product
#			X_2_vector = np.reshape(X_2_matrix, -1) # reshape into a vector

			#- center and normalize X^2 by mean and standard deviation
#			X_2_vector_scaled[j] = preprocessing.scale(X_2_vector) 

			#- concatenate with input X -> 110 dimensions
#			concatenated_X_X_2[j] = np.concatenate([X_matrix[j], X_2_vector_scaled[j]])

# FOR NOW, ONLY USE X, NOT OUTER PRODUCT
			concatenated_X_X_2[j] = X_matrix[j]

                # NOTE, THIS SHOULD REALLY JUST BE A BIG VECTOR FOR EACH STROKE, SO RESHAPE BEFORE ADDING TO OUTPUT LIST
                # ALSO, THE STROKE VALUE SHOULD BE ADDED
                this_sample = np.concatenate((np.reshape(concatenated_X_X_2, -1), np.array([curr_stroke_val])))
                concatenated_samples = np.reshape(this_sample, -1)

                # ADD TO OUTPUT ARRAY
                output_array[i] = concatenated_samples
        
        print(output_array.size)
        
	return(output_array)
开发者ID:galenwilkerson,项目名称:Handwriting-Recognition-using-acceleration-data,代码行数:104,代码来源:preprocess_w_arc_lengths.py


注:本文中的scipy.interpolate.UnivariateSpline.integral_2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。