本文整理汇总了Python中scipy._lib._numpy_compat.suppress_warnings函数的典型用法代码示例。如果您正苦于以下问题:Python suppress_warnings函数的具体用法?Python suppress_warnings怎么用?Python suppress_warnings使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了suppress_warnings函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_zero_der_nz_dp
def test_zero_der_nz_dp():
"""Test secant method with a non-zero dp, but an infinite newton step"""
# pick a symmetrical functions and choose a point on the side that with dx
# makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2,
# which has a root at x = 100 and is symmetrical around the line x = 100
# we have to pick a really big number so that it is consistently true
# now find a point on each side so that the secant has a zero slope
dx = np.finfo(float).eps ** 0.33
# 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100
# -> 200 = p0 * (2 + dx) + dx
p0 = (200.0 - dx) / (2.0 + dx)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "RMS of")
x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10)
assert_allclose(x, [100] * 10)
# test scalar cases too
p0 = (2.0 - 1e-4) / (2.0 + 1e-4)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "Tolerance of")
x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0)
assert_allclose(x, 1)
p0 = (-2.0 + 1e-4) / (2.0 + 1e-4)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "Tolerance of")
x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0)
assert_allclose(x, -1)
示例2: test_moments
def test_moments(distname, arg, normalization_ok, higher_ok):
try:
distfn = getattr(stats, distname)
except TypeError:
distfn = distname
distname = 'rv_histogram_instance'
with suppress_warnings() as sup:
sup.filter(IntegrationWarning, "The integral is probably divergent, or slowly convergent.")
m, v, s, k = distfn.stats(*arg, moments='mvsk')
if normalization_ok:
check_normalization(distfn, arg, distname)
if higher_ok:
check_mean_expect(distfn, arg, m, distname)
with suppress_warnings() as sup:
sup.filter(IntegrationWarning,
"The integral is probably divergent, or slowly convergent.")
check_skew_expect(distfn, arg, m, v, s, distname)
check_var_expect(distfn, arg, m, v, distname)
check_kurt_expect(distfn, arg, m, v, k, distname)
check_loc_scale(distfn, arg, m, v, distname)
check_moment(distfn, arg, m, v, distname)
示例3: test_imsave
def test_imsave(self):
picdir = os.path.join(datapath, "data")
for png in glob.iglob(picdir + "/*.png"):
with suppress_warnings() as sup:
# PIL causes a Py3k ResourceWarning
sup.filter(message="unclosed file")
img = misc.imread(png)
tmpdir = tempfile.mkdtemp()
try:
fn1 = os.path.join(tmpdir, 'test.png')
fn2 = os.path.join(tmpdir, 'testimg')
with suppress_warnings() as sup:
# PIL causes a Py3k ResourceWarning
sup.filter(message="unclosed file")
misc.imsave(fn1, img)
misc.imsave(fn2, img, 'PNG')
with suppress_warnings() as sup:
# PIL causes a Py3k ResourceWarning
sup.filter(message="unclosed file")
data1 = misc.imread(fn1)
data2 = misc.imread(fn2)
assert_allclose(data1, img)
assert_allclose(data2, img)
assert_equal(data1.shape, img.shape)
assert_equal(data2.shape, img.shape)
finally:
shutil.rmtree(tmpdir)
示例4: test_callback
def test_callback(self):
def store_residual(r, rvec):
rvec[rvec.nonzero()[0].max()+1] = r
# Define, A,b
A = csr_matrix(array([[-2,1,0,0,0,0],[1,-2,1,0,0,0],[0,1,-2,1,0,0],[0,0,1,-2,1,0],[0,0,0,1,-2,1],[0,0,0,0,1,-2]]))
b = ones((A.shape[0],))
maxiter = 1
rvec = zeros(maxiter+1)
rvec[0] = 1.0
callback = lambda r:store_residual(r, rvec)
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, ".*called without specifying.*")
x,flag = gmres(A, b, x0=zeros(A.shape[0]), tol=1e-16, maxiter=maxiter, callback=callback)
# Expected output from Scipy 1.0.0
assert_allclose(rvec, array([1.0, 0.81649658092772603]), rtol=1e-10)
# Test preconditioned callback
M = 1e-3 * np.eye(A.shape[0])
rvec = zeros(maxiter+1)
rvec[0] = 1.0
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, ".*called without specifying.*")
x, flag = gmres(A, b, M=M, tol=1e-16, maxiter=maxiter, callback=callback)
# Expected output from Scipy 1.0.0 (callback has preconditioned residual!)
assert_allclose(rvec, array([1.0, 1e-3 * 0.81649658092772603]), rtol=1e-10)
示例5: test_errprint
def test_errprint():
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, "`errprint` is deprecated!")
flag = sc.errprint(True)
try:
assert_(isinstance(flag, bool))
with pytest.warns(sc.SpecialFunctionWarning):
sc.loggamma(0)
finally:
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, "`errprint` is deprecated!")
sc.errprint(flag)
示例6: test_bytescale_cscale_lowhigh
def test_bytescale_cscale_lowhigh(self):
a = np.arange(10)
with suppress_warnings() as sup:
sup.filter(DeprecationWarning)
actual = misc.bytescale(a, cmin=3, cmax=6, low=100, high=200)
expected = [100, 100, 100, 100, 133, 167, 200, 200, 200, 200]
assert_equal(actual, expected)
示例7: test_triangularity_perturbation
def test_triangularity_perturbation(self):
# Experiment (1) of
# Awad H. Al-Mohy and Nicholas J. Higham (2012)
# Improved Inverse Scaling and Squaring Algorithms
# for the Matrix Logarithm.
A = np.array([
[3.2346e-1, 3e4, 3e4, 3e4],
[0, 3.0089e-1, 3e4, 3e4],
[0, 0, 3.221e-1, 3e4],
[0, 0, 0, 3.0744e-1]],
dtype=float)
A_logm = np.array([
[-1.12867982029050462e+00, 9.61418377142025565e+04,
-4.52485573953179264e+09, 2.92496941103871812e+14],
[0.00000000000000000e+00, -1.20101052953082288e+00,
9.63469687211303099e+04, -4.68104828911105442e+09],
[0.00000000000000000e+00, 0.00000000000000000e+00,
-1.13289322264498393e+00, 9.53249183094775653e+04],
[0.00000000000000000e+00, 0.00000000000000000e+00,
0.00000000000000000e+00, -1.17947533272554850e+00]],
dtype=float)
assert_allclose(expm(A_logm), A, rtol=1e-4)
# Perturb the upper triangular matrix by tiny amounts,
# so that it becomes technically not upper triangular.
random.seed(1234)
tiny = 1e-17
A_logm_perturbed = A_logm.copy()
A_logm_perturbed[1, 0] = tiny
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "Ill-conditioned.*")
A_expm_logm_perturbed = expm(A_logm_perturbed)
rtol = 1e-4
atol = 100 * tiny
assert_(not np.allclose(A_expm_logm_perturbed, A, rtol=rtol, atol=atol))
示例8: test_multiple_constraint_objects
def test_multiple_constraint_objects(self):
fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 + (x[2] - 0.75)**2
x0 = [2, 0, 1]
coni = [] # only inequality constraints (can use cobyla)
methods = ["slsqp", "cobyla", "trust-constr"]
# mixed old and new
coni.append([{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
coni.append([LinearConstraint([1, -2, 0], -2, np.inf),
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
coni.append([NonlinearConstraint(lambda x: x[0] - 2 * x[1] + 2, 0, np.inf),
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
for con in coni:
funs = {}
for method in methods:
with suppress_warnings() as sup:
sup.filter(UserWarning)
result = minimize(fun, x0, method=method, constraints=con)
funs[method] = result.fun
assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-4)
assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-4)
示例9: test_bug_6690
def test_bug_6690(self):
# https://github.com/scipy/scipy/issues/6690
A_eq = np.array([[0., 0., 0., 0.93, 0., 0.65, 0., 0., 0.83, 0.]])
b_eq = np.array([0.9626])
A_ub = np.array([[0., 0., 0., 1.18, 0., 0., 0., -0.2, 0.,
-0.22],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0.43, 0., 0., 0., 0., 0., 0.],
[0., -1.22, -0.25, 0., 0., 0., -2.06, 0., 0.,
1.37],
[0., 0., 0., 0., 0., 0., 0., -0.25, 0., 0.]])
b_ub = np.array([0.615, 0., 0.172, -0.869, -0.022])
bounds = np.array(
[[-0.84, -0.97, 0.34, 0.4, -0.33, -0.74, 0.47, 0.09, -1.45, -0.73],
[0.37, 0.02, 2.86, 0.86, 1.18, 0.5, 1.76, 0.17, 0.32, -0.15]]).T
c = np.array([-1.64, 0.7, 1.8, -1.06, -1.16,
0.26, 2.13, 1.53, 0.66, 0.28])
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
sup.filter(OptimizeWarning, "Solving system with option...")
sol = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq,
bounds=bounds, method=self.method,
options=self.options)
_assert_success(sol, desired_fun=-1.191)
示例10: test_network_flow_limited_capacity
def test_network_flow_limited_capacity(self):
# A network flow problem with supply and demand at nodes
# and with costs and capacities along directed edges.
# http://blog.sommer-forst.de/2013/04/10/
cost = [2, 2, 1, 3, 1]
bounds = [
[0, 4],
[0, 2],
[0, 2],
[0, 3],
[0, 5]]
n, p = -1, 1
A_eq = [
[n, n, 0, 0, 0],
[p, 0, n, n, 0],
[0, p, p, 0, n],
[0, 0, 0, p, p]]
b_eq = [-4, 0, 0, 4]
if self.method == "simplex":
# Including the callback here ensures the solution can be
# calculated correctly, even when phase 1 terminated
# with some of the artificial variables as pivots
# (i.e. basis[:m] contains elements corresponding to
# the artificial variables)
res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
method=self.method, options=self.options,
callback=lambda x, **kwargs: None)
else:
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
sup.filter(OptimizeWarning, "A_eq does not appear...")
res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
method=self.method, options=self.options)
_assert_success(res, desired_fun=14)
示例11: test_zero_rhs
def test_zero_rhs(solver):
np.random.seed(1234)
A = np.random.rand(10, 10)
A = A.dot(A.T) + 10 * np.eye(10)
b = np.zeros(10)
tols = np.r_[np.logspace(np.log10(1e-10), np.log10(1e2), 7)]
for tol in tols:
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, ".*called without specifying.*")
x, info = solver(A, b, tol=tol)
assert_equal(info, 0)
assert_allclose(x, 0, atol=1e-15)
x, info = solver(A, b, tol=tol, x0=ones(10))
assert_equal(info, 0)
assert_allclose(x, 0, atol=tol)
if solver is not minres:
x, info = solver(A, b, tol=tol, atol=0, x0=ones(10))
if info == 0:
assert_allclose(x, 0)
x, info = solver(A, b, tol=tol, atol=tol)
assert_equal(info, 0)
assert_allclose(x, 0, atol=1e-300)
x, info = solver(A, b, tol=tol, atol=0)
assert_equal(info, 0)
assert_allclose(x, 0, atol=1e-300)
示例12: test_imread_indexed_png
def test_imread_indexed_png():
# The file `foo3x5x4indexed.png` was created with this array
# (3x5 is (height)x(width)):
data = np.array([[[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255]],
[[192, 192, 255, 0],
[192, 192, 255, 0],
[0, 0, 255, 0],
[0, 0, 255, 0],
[0, 0, 255, 0]],
[[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255]]], dtype=np.uint8)
filename = os.path.join(datapath, 'data', 'foo3x5x4indexed.png')
with open(filename, 'rb') as f:
with suppress_warnings() as sup:
sup.filter(DeprecationWarning)
im = misc.imread(f)
assert_array_equal(im, data)
示例13: test_bytescale
def test_bytescale(self):
x = np.array([0, 1, 2], np.uint8)
y = np.array([0, 1, 2])
with suppress_warnings() as sup:
sup.filter(DeprecationWarning)
assert_equal(misc.bytescale(x), x)
assert_equal(misc.bytescale(y), [0, 128, 255])
示例14: test_bytescale_low_equals_high
def test_bytescale_low_equals_high(self):
a = np.arange(3)
with suppress_warnings() as sup:
sup.filter(DeprecationWarning)
actual = misc.bytescale(a, low=10, high=10)
expected = [10, 10, 10]
assert_equal(actual, expected)
示例15: test_bytescale_rounding
def test_bytescale_rounding(self):
a = np.array([-0.5, 0.5, 1.5, 2.5, 3.5])
with suppress_warnings() as sup:
sup.filter(DeprecationWarning)
actual = misc.bytescale(a, cmin=0, cmax=10, low=0, high=10)
expected = [0, 1, 2, 3, 4]
assert_equal(actual, expected)