当前位置: 首页>>代码示例>>Python>>正文


Python scipy.transpose函数代码示例

本文整理汇总了Python中scipy.transpose函数的典型用法代码示例。如果您正苦于以下问题:Python transpose函数的具体用法?Python transpose怎么用?Python transpose使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了transpose函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_delta

def plot_delta():     
    beta = 0.99
    N = 1000
    u = lambda c: sp.sqrt(c)
    W = sp.linspace(0,1,N)
    X, Y = sp.meshgrid(W,W)
    Wdiff = sp.transpose(X-Y)
    index = Wdiff <0
    Wdiff[index] = 0
    util_grid = u(Wdiff)
    util_grid[index] = -10**10
    
    Vprime = sp.zeros((N,1))
    delta = sp.ones(1)
    tol = 10**-9
    it = 0
    max_iter = 500
    
    while (delta[-1] >= tol) and (it < max_iter):
        V = Vprime
        it += 1;
        print(it)
        val = util_grid + beta*sp.transpose(V)
        Vprime = sp.amax(val, axis = 1)
        Vprime = Vprime.reshape((N,1))
        delta = sp.append(delta,sp.dot(sp.transpose(Vprime - V),Vprime-V))
        
    plt.figure()
    plt.plot(delta[1:])
    plt.ylabel(r'$\delta_k$')
    plt.xlabel('iteration')
    plt.savefig('convergence.pdf')
开发者ID:jareddf,项目名称:numerical_computing,代码行数:32,代码来源:VFI_plots.py

示例2: func

    def func(self, X, V):
        k = self.C.TFdata.k
        v1 = self.C.TFdata.v1
        w1 = self.C.TFdata.w1
        
        if k >=0:
            J_coords = self.F.sysfunc.J_coords
            w = sqrt(k)
        
            q = v1 - (1j/w)*matrixmultiply(self.F.sysfunc.J_coords,v1)
            p = w1 + (1j/w)*matrixmultiply(transpose(self.F.sysfunc.J_coords),w1)
            
            p /= linalg.norm(p)
            q /= linalg.norm(q)

            p = reshape(p,(p.shape[0],))
            q = reshape(q,(q.shape[0],))
            
            direc = conjugate(1/matrixmultiply(transpose(conjugate(p)),q))
            p = direc*p

            l1 = firstlyapunov(X, self.F.sysfunc, w, J_coords=J_coords, p=p, q=q)
            
            return array([l1])
        else:
            return array([1])
开发者ID:BenjaminBerhault,项目名称:Python_Classes4MAD,代码行数:26,代码来源:TestFunc.py

示例3: sqcover

def sqcover(A,n):
    edge = sp.sqrt(A) # the length of an edge
    d = edge/n # the distance between two adjacent points
    r = d/2 # the "radius of "
    end = edge - r # end point
    base = sp.linspace(r, end, n)
    first_line = sp.transpose(sp.vstack((base, r*sp.ones(n))))
    increment = sp.transpose(sp.vstack((sp.zeros(n), d*sp.ones(n))))
    pts = first_line
    y_diff = increment
    for i in range(n-1):
        pts = sp.vstack((pts, first_line + y_diff))
        y_diff = y_diff + increment
    
    # Color matter
    colors = []
    for p in pts:
        cval = n*p[0] + p[1] # the x-coord has a higher weight
        cval = colormap.Spectral(cval/((n+1)*end)) # normalize by the max value that cval can take.
        colors.append(cval)

    colors = sp.array(colors)

    cover = (pts, r, colors)
    return cover
开发者ID:atkm,项目名称:reed-modeling,代码行数:25,代码来源:ga_shapes.py

示例4: trueFeatureStats

def trueFeatureStats(T, R, fMap, discountFactor, stateProp=1, MAT_LIMIT=1e8):
    """ Gather the statistics needed for LSTD,
    assuming infinite data (true probabilities).
    Option: if stateProp is  < 1, then only a proportion of all 
    states will be seen as starting state for transitions """
    dim = len(fMap)
    numStates = len(T)
    statMatrix = zeros((dim, dim))
    statResidual = zeros(dim)
    ss = range(numStates)
    repVersion = False
    
    if stateProp < 1:
        ss = random.sample(ss, int(numStates * stateProp))
    elif dim * numStates**2 < MAT_LIMIT:
        repVersion = True
    
    # two variants, depending on how large we can afford our matrices to become.        
    if repVersion:    
        tmp1 = tile(fMap, (numStates,1,1))
        tmp2 = transpose(tmp1, (2,1,0))
        tmp3 = tmp2 - discountFactor * tmp1            
        tmp4 = tile(T, (dim,1,1))
        tmp4 *= transpose(tmp1, (1,2,0))
        statMatrix = tensordot(tmp3, tmp4, axes=[[0,2], [1,2]]).T
        statResidual = dot(R, dot(fMap, T).T)
    else:
        for sto in ss:
            tmp = fMap - discountFactor * repmat(fMap[:, sto], numStates, 1).T
            tmp2 = fMap * repmat(T[:, sto], dim, 1)
            statMatrix += dot(tmp2, tmp.T)             
            statResidual += R[sto] * dot(fMap, T[:, sto])
    return statMatrix, statResidual
开发者ID:Boblogic07,项目名称:pybrain,代码行数:33,代码来源:leastsquares.py

示例5: Problem3Real

def Problem3Real():
    beta = 0.9
    N = 1000
    u = lambda c: sp.sqrt(c)
    W = sp.linspace(0,1,N)
    X, Y = sp.meshgrid(W,W)
    Wdiff = sp.transpose(X-Y)
    index = Wdiff <0
    Wdiff[index] = 0
    util_grid = u(Wdiff)
    util_grid[index] = -10**10
    
    Vprime = sp.zeros((N,1))
    psi = sp.zeros((N,1))
    delta = 1.0
    tol = 10**-9
    it = 0
    max_iter = 500
    
    while (delta >= tol) and (it < max_iter):
        V = Vprime
        it += 1;
        #print(it)
        val = util_grid + beta*sp.transpose(V)
        Vprime = sp.amax(val, axis = 1)
        Vprime = Vprime.reshape((N,1))
        psi_ind = sp.argmax(val,axis = 1)
        psi    = W[psi_ind]
        delta = sp.dot(sp.transpose(Vprime - V),Vprime-V)
    
    return psi
开发者ID:davidreber,项目名称:Labs,代码行数:31,代码来源:solutionstester.py

示例6: updatedata

 def updatedata(self, A):
     if self.update:
         if self.corr:
             self.data.B = self.data.w*(linalg.norm(A,1)/linalg.norm(self.data.w,1))
             self.data.C = self.data.v*(linalg.norm(A,Inf)/linalg.norm(self.data.v,1))
         else:
             # Note: Problem when singular vectors switch smallest singular value (See NewLorenz).
             #       To overcome this, I have implemented a 1e-8 random nudge.
             try:
                 ALU = linalg.lu_factor(A)
                 BC = linalg.lu_solve(ALU, c_[linalg.lu_solve(ALU, self.data.B + 1e-8*self.data.Brand), \
                                      self.data.C + 1e-8*self.data.Crand], trans=1)
                 C = linalg.lu_solve(ALU, BC[:,-1*self.data.q:])
                 B = BC[:,0:self.data.p]
             except:
                 if self.C.verbosity >= 1:
                     print 'Warning: Problem updating border vectors.  Using svd...'
                 U, S, Vh = linalg.svd(A)
                 B = U[:,-1*self.data.p:]
                 C = num_transpose(Vh)[:,-1*self.data.q:]
         
             bmult = cmult = 1
             if matrixmultiply(transpose(self.data.B), B) < 0:
                 bmult = -1
             if matrixmultiply(transpose(self.data.C), C) < 0:
                 cmult = -1
             self.data.B = bmult*B*(linalg.norm(A,1)/linalg.norm(B))
             self.data.C = cmult*C*(linalg.norm(A,Inf)/linalg.norm(C))
开发者ID:BenjaminBerhault,项目名称:Python_Classes4MAD,代码行数:28,代码来源:TestFunc.py

示例7: mlr

def mlr(x,y,order):
    """Multiple linear regression fit of the columns of matrix x 
    (dependent variables) to constituent vector y (independent variables)
    
    order -     order of a smoothing polynomial, which can be included 
                in the set of independent variables. If order is
                not specified, no background will be included.
    b -         fit coeffs
    f -         fit result (m x 1 column vector)
    r -         residual   (m x 1 column vector)
    """
    
    if order > 0:
        s=scipy.ones((len(y),1))
        for j in range(order):
            s=scipy.concatenate((s,(scipy.arange(0,1+(1.0/(len(y)-1)),1.0/(len(y)-1))**j)[:,nA]),1)
        X=scipy.concatenate((x, s),1)
    else:
        X = x
    
    #calc fit b=fit coefficients
    b = scipy.dot(scipy.dot(scipy.linalg.pinv(scipy.dot(scipy.transpose(X),X)),scipy.transpose(X)),y)
    f = scipy.dot(X,b)
    r = y - f

    return b,f,r
开发者ID:jikhanjung,项目名称:modan,代码行数:26,代码来源:chemometrics.py

示例8: update_image

def update_image(original_im, ci_red, ci_green, ci_blue):

    # diagnostics = dict()

    original_im = scipy.transpose(original_im)
    # diagnostics['original_im'] = original_im
    # diagnostics['ci_red'] = ci_red
    # diagnostics['ci_green'] = ci_green
    # diagnostics['ci_blue'] = ci_blue

    new_r = scipy.multiply(original_im[0], original_im[0] > ci_red)

    new_g = scipy.multiply(original_im[1], original_im[1] > ci_green)

    new_b = scipy.multiply(original_im[2], original_im[2] > ci_blue)

    new_im = (new_r, new_g, new_b)

    new_im = scipy.transpose(new_im)
    # diagnostics['new_im'] = new_im

    # with open('/Users/lages/Documents/sauceda/pictures_processed/diagnostics'
    #           '.p', 'wb') as f:
    #     pickle.dump(diagnostics, f)

    return new_im
开发者ID:saucedaf,项目名称:CellProfiler_Module,代码行数:26,代码来源:truncthresholdobjects.py

示例9: plot_disc_policy

def plot_disc_policy():
    #First compute policy function...==========================================
    N = 500
    w = sp.linspace(0,100,N)
    w = w.reshape(N,1)
    u = lambda c: sp.sqrt(c)
    util_vec = u(w)
    alpha = 0.5
    alpha_util = u(alpha*w)
    alpha_util_grid = sp.repeat(alpha_util,N,1)
    
    m = 20
    v = 200
    f = discretelognorm(w,m,v)
    
    VEprime = sp.zeros((N,1))
    VUprime    = sp.zeros((N,N))
    EVUprime = sp.zeros((N,1))
    psiprime = sp.ones((N,1))
    gamma = 0.1
    beta = 0.9
    
    m = 15
    tol = 10**-9
    delta = 1+tol
    it = 0
    while (delta >= tol):
        it += 1
        
        psi = psiprime.copy()
        arg1 = sp.repeat(sp.transpose(VEprime),N,0)
        arg2 = sp.repeat(EVUprime,N,1)
        arg = sp.array([arg2,arg1])
        psiprime = sp.argmax(arg,axis = 0) 
        
        for j in sp.arange(0,m):
            VE = VEprime.copy()
            VU = VUprime.copy()
            EVU = EVUprime.copy()
            VEprime = util_vec + beta*((1-gamma)*VE + gamma*EVU)
            arg1 = sp.repeat(sp.transpose(VE),N,0)*psiprime
            arg2 = sp.repeat(EVU,N,1)*(1-psiprime)
            arg = arg1+arg2
            VUprime = alpha_util_grid + beta*arg
            EVUprime = sp.dot(VUprime,f)  
    
        
    
        delta = sp.linalg.norm(psiprime -psi) 

    wr_ind = sp.argmax(sp.diff(psiprime), axis = 1)
    wr = w[wr_ind]
    print w[250],wr[250]
        
    #Then plot=================================================================
    plt.plot(w,psiprime[250,:]) 
    plt.ylim([-.5,1.5])      
    plt.xlabel(r'$w\prime$')
    plt.yticks([0,1])
    plt.savefig('disc_policy.pdf')
开发者ID:byuimpactrevisions,项目名称:numerical_computing,代码行数:60,代码来源:job_plots.py

示例10: __interpolateBetweenBinaryObjects

def __interpolateBetweenBinaryObjects(obj1, obj2, slices):
    """
    Takes two binary objects and puts slices slices in-between them, each of which
    contains a smooth binary transition between the objects.
    @note private inner function
    """
    if not obj1.shape == obj2.shape:
        raise AttributeError(
            "The two supplied objects have to be of the same shape, not {} and {}.".format(obj1.shape, obj2.shape)
        )

    # constant
    offset = 0.5  # must be a value smaller than the minimal distance possible
    temporal_dimension = 3

    # get all voxel position
    obj1_voxel = scipy.nonzero(obj1)
    obj2_voxel = scipy.nonzero(obj2)

    # get smallest pairwise distances between all object voxels
    distances = cdist(scipy.transpose(obj1_voxel), scipy.transpose(obj2_voxel))

    # keep for each True voxel of obj1 only the smallest distance to a True voxel in obj2
    min_distances = distances.min(1)

    # test if all seems to work
    if len(min_distances) != len(obj1_voxel[0]):
        raise Exception("Invalid number of minimal distances received.")

    # replace True voxels in obj1 with their respective distances to the True voxels in obj2
    thr_obj = obj1.copy()
    thr_obj = thr_obj.astype(scipy.float_)
    thr_obj[obj1_voxel] = min_distances
    thr_obj[obj1_voxel] += offset  # previous steps distances include zeros, therefore this is required

    # compute the step size for each slice that is added
    maximum = min_distances.max()
    step = maximum / float(slices + 1)
    threshold = maximum

    # control step: see if thr_obj really corresponds to obj1
    if not scipy.all(thr_obj.astype(scipy.bool_) == obj1.astype(scipy.bool_)):
        raise Exception("First created object does not correspond to obj1.")

    # assemble return volume
    return_volume = [thr_obj.astype(scipy.bool_)]  # corresponds to obj1
    for _ in range(slices):
        threshold -= step
        # remove all value higher than the threshold
        thr_obj[thr_obj > threshold] = 0
        # add binary volume to list /makes a copy)
        return_volume.append(thr_obj.astype(scipy.bool_))

    # add last slice (corresponds to es obj2 slice)
    thr_obj[thr_obj > offset] = 0
    return_volume.append(thr_obj.astype(scipy.bool_))

    # return binary scipy array
    return scipy.rollaxis(scipy.asarray(return_volume, dtype=scipy.bool_), 0, temporal_dimension + 1)
开发者ID:tatafarewell,项目名称:medpy,代码行数:59,代码来源:extract_and_enhance_atlas_markers_slicewise.py

示例11: baseline2

def baseline2(myarray):
    """Subtract average of the first and last bin from each bin
    """
    size = myarray.shape
    take_array = scipy.transpose(
        scipy.resize(scipy.transpose((myarray[:, 0] + myarray[:, size[1] - 1]) / 2), (size[1], size[0]))
    )
    return myarray - take_array
开发者ID:myw,项目名称:dataiap,代码行数:8,代码来源:process.py

示例12: calculate_ld

def calculate_ld(snps):
        #filter non binary snps
        snps_t = scipy.transpose(snps)
        snps_stand = scipy.transpose((snps_t - scipy.mean(snps, 1)) / scipy.std(snps, 1))
        r2_values =scipy.dot(snps_stand, scipy.transpose(snps_stand))
        r2_values *= (1.0 / snps.shape[1])
        r2_values **= 2
        return r2_values
开发者ID:timeu,项目名称:PyGWAS,代码行数:8,代码来源:genotype.py

示例13: mls

def mls(p):

    data = ascii.read("datos.dat")  
    
    x=data["col1"]
    y=data["col2"]
    z=data["col3"]
    
    sig=30*(10**(-6))
    
    Y=sy.subtract(y,1)
    
    A=[]

    

    for m in x:
        
        pol=[]
        for i in range(p+1):
            pol.append(m**i)
        if m <0.4 or m>0.7:
            pol.append(0)
            A.append(pol) 
      
        else:
            pol.append(-1)
            A.append(pol)
            
    
    
    theta= sy.dot( sy.linalg.inv(sy.dot( sy.transpose(A),A )) , sy.dot(sy.transpose(A),Y) )

    modelo=[]
    
    for i in x:
        
        poli=1
        for s in range(p+1):
            poli+=(theta[s]*(i**s))    
        
        e=sy.random.normal(0,sig)
        if i <0.4 or i>0.7:
            modelo.append(poli)
      
        else:
            modelo.append(poli - theta[len(theta)-1])   
        
    
    chi2=0

    for h in range(len(x)):
        
        chi2+= ((y[h]-modelo[h]) / (sig) ) **2       
        
    return modelo, theta , len(x) ,sig ,chi2
开发者ID:jpdiazp,项目名称:Tarea4,代码行数:56,代码来源:3a.py

示例14: trim

def trim(image):  # 255 - white
    tr_image = transpose(image)
    start = 0
    while sum(tr_image[start]) == 255 * len(tr_image[start]):
        # condition on i is not needed, because of the balance between white and black
        start += 1
    finish = len(tr_image) - 1
    while sum(tr_image[finish]) == 255 * len(tr_image[finish]):
        finish -= 1
    return transpose(tr_image[start: finish + 1])
开发者ID:Dimassio,项目名称:neg-sample-extractor,代码行数:10,代码来源:neg_sample_extractor.py

示例15: Problem6Real

def Problem6Real():
    N = 500
    w = sp.linspace(0,100,N)
    w = w.reshape(N,1)
    u = lambda c: sp.sqrt(c)
    util_vec = u(w)
    alpha = 0.5
    alpha_util = u(alpha*w)
    alpha_util_grid = sp.repeat(alpha_util,N,1)
    
    m = 20
    v = 200
    f = discretelognorm(w,m,v)
    
    VEprime = sp.zeros((N,1))
    VUprime    = sp.zeros((N,N))
    EVUprime = sp.zeros((N,1))
    psiprime = sp.ones((N,1))
    gamma = 0.1
    beta = 0.9
    
    m = 15
    tol = 10**-9
    delta = 1+tol
    it = 0
    while (delta >= tol):
        it += 1
        
        psi = psiprime.copy()
        arg1 = sp.repeat(sp.transpose(VEprime),N,0)
        arg2 = sp.repeat(EVUprime,N,1)
        arg = sp.array([arg2,arg1])
        psiprime = sp.argmax(arg,axis = 0)    
        
        for j in sp.arange(0,m):
            VE = VEprime.copy()
            VU = VUprime.copy()
            EVU = EVUprime.copy()
            VEprime = util_vec + beta*((1-gamma)*VE + gamma*EVU)
            arg1 = sp.repeat(sp.transpose(VE),N,0)*psiprime
            arg2 = sp.repeat(EVU,N,1)*(1-psiprime)
            arg = arg1+arg2
            VUprime = alpha_util_grid + beta*arg
            EVUprime = sp.dot(VUprime,f)  
    
        
    
        delta = sp.linalg.norm(psiprime -psi)
        #print(delta)    
        
    wr_ind = sp.argmax(sp.diff(psiprime), axis = 1)
    wr = w[wr_ind]
    plt.plot(w,wr)
    plt.show()
    return wr
开发者ID:davidreber,项目名称:Labs,代码行数:55,代码来源:solutionstester.py


注:本文中的scipy.transpose函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。