当前位置: 首页>>代码示例>>Python>>正文


Python scipy.sum函数代码示例

本文整理汇总了Python中scipy.sum函数的典型用法代码示例。如果您正苦于以下问题:Python sum函数的具体用法?Python sum怎么用?Python sum使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了sum函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: generate_proc_sim

def generate_proc_sim(input_file, weightfile, output_file,
                      meansub=False, degrade=False):
    r"""make the maps with various combinations of beam conv/meansub"""
    print "%s -> %s (beam, etc.)" % (input_file, output_file)
    simmap = algebra.make_vect(algebra.load(input_file))

    if degrade:
        print "performing common resolution convolution"
        beam_data = sp.array([0.316148488246, 0.306805630985, 0.293729620792,
                 0.281176247549, 0.270856788455, 0.26745856078,
                 0.258910010848, 0.249188429031])
        freq_data = sp.array([695, 725, 755, 785, 815, 845, 875, 905],
                             dtype=float)
        freq_data *= 1.0e6
        beam_diff = sp.sqrt(max(1.1 * beam_data) ** 2 - (beam_data) ** 2)
        common_resolution = beam.GaussianBeam(beam_diff, freq_data)
        # Convolve to a common resolution.
        simmap = common_resolution.apply(simmap)

    if meansub:
        print "performing mean subtraction"
        noise_inv = algebra.make_vect(algebra.load(weightfile))
        means = sp.sum(sp.sum(noise_inv * simmap, -1), -1)
        means /= sp.sum(sp.sum(noise_inv, -1), -1)
        means.shape += (1, 1)
        simmap -= means
        # the weights will be zero in some places
        simmap[noise_inv < 1.e-20] = 0.

    # extra sanity?
    simmap[np.isinf(simmap)] = 0.
    simmap[np.isnan(simmap)] = 0.

    print "saving to" + output_file
    algebra.save(output_file, simmap)
开发者ID:OMGitsHongyu,项目名称:analysis_IM,代码行数:35,代码来源:simulate_gbt_aux.py

示例2: determine_sign_of_emat

def determine_sign_of_emat(emat,wt_seq):
    """determine what the correct sign is for an energy matrix. We will
    use the assumption that the wild type sequence must be better
    binding than a random sequence.

    INPUTS:
    emat: energy matrix
    wt_seq: wild type sequence of energy matrix

    OUTPUT:
    emat: energy matrix with correct sign
    """
    n_rand = 1000 # number of random sequences to check
    e_rand = sp.zeros(n_rand)
    # convert sequence to matrix
    seq_mat = seq2mat(wt_seq)
    e_wt = sp.sum(emat*seq_mat)

    for i in range(n_rand):
        seq_rand = sp.zeros((4,len(wt_seq)))

        for j in range(len(wt_seq)):
            seq_rand[sp.random.randint(4),j] = 1
        e_rand[i] = sp.sum(emat*seq_rand)
    if e_wt < sp.mean(e_rand):
        return emat
    else:
        return -emat
开发者ID:irelandb,项目名称:sortseq,代码行数:28,代码来源:MCMC_utils.py

示例3: _do_one_inner_iteration

    def _do_one_inner_iteration(self, inv_val):
        r"""
        Determine which throats are invaded at a given applied capillary
        pressure.

        """
        # Generate a tlist containing boolean values for throat state
        Tinvaded = self['throat.entry_pressure'] <= inv_val
        # Find all pores that can be invaded at specified pressure
        [pclusters, tclusters] = self._net.find_clusters2(mask=Tinvaded,
                                                          t_labels=True)
        if self._AL:
            # Identify clusters connected to invasion sites
            inv_clusters = sp.unique(pclusters[self['pore.inlets']])
        else:
            # All clusters are invasion sites
            inv_clusters = pclusters
        inv_clusters = inv_clusters[inv_clusters >= 0]
        # Find pores on the invading clusters
        pmask = np.in1d(pclusters, inv_clusters)
        # Store current applied pressure in newly invaded pores
        pinds = (self['pore.inv_Pc'] == sp.inf) * (pmask)
        self['pore.inv_Pc'][pinds] = inv_val
        # Find throats on the invading clusters
        tmask = np.in1d(tclusters, inv_clusters)
        # Store current applied pressure in newly invaded throats
        tinds = (self['throat.inv_Pc'] == sp.inf) * (tmask)
        self['throat.inv_Pc'][tinds] = inv_val
        # Store total network saturation
        tsat = sp.sum(self._net['throat.volume'][self['throat.inv_Pc'] <= inv_val])
        psat = sp.sum(self._net['pore.volume'][self['pore.inv_Pc'] <= inv_val])
        total = sp.sum(self._net['throat.volume']) + sp.sum(self._net['pore.volume'])
        self['pore.inv_sat'][pinds] = (tsat + psat)/total
        self['throat.inv_sat'][tinds] = (tsat + psat)/total
开发者ID:MichaelHoeh,项目名称:OpenPNM,代码行数:34,代码来源:__OrdinaryPercolation__.py

示例4: computeOpenMaxProbability

def computeOpenMaxProbability(openmax_fc8, openmax_score_u):
    """ Convert the scores in probability value using openmax
    
    Input:
    ---------------
    openmax_fc8 : modified FC8 layer from Weibull based computation
    openmax_score_u : degree

    Output:
    ---------------
    modified_scores : probability values modified using OpenMax framework,
    by incorporating degree of uncertainity/openness for a given class
    
    """
    prob_scores, prob_unknowns = [], []
    for channel in range(NCHANNELS):
        channel_scores, channel_unknowns = [], []
        for category in range(NCLASSES):
            channel_scores += [sp.exp(openmax_fc8[channel, category])]
                    
        total_denominator = sp.sum(sp.exp(openmax_fc8[channel, :])) + sp.exp(sp.sum(openmax_score_u[channel, :]))
        prob_scores += [channel_scores/total_denominator ]
        prob_unknowns += [sp.exp(sp.sum(openmax_score_u[channel, :]))/total_denominator]
        
    prob_scores = sp.asarray(prob_scores)
    prob_unknowns = sp.asarray(prob_unknowns)

    scores = sp.mean(prob_scores, axis = 0)
    unknowns = sp.mean(prob_unknowns, axis=0)
    modified_scores =  scores.tolist() + [unknowns]
    assert len(modified_scores) == 1001
    return modified_scores
开发者ID:abhijitbendale,项目名称:OSDN,代码行数:32,代码来源:compute_openmax.py

示例5: LML

    def LML(self,params=None,*kw_args):
        """
        calculate LML
        """
        if params is not None:
            self.setParams(params)

        self._update_cache()
        
        start = TIME.time()

        #1. const term
        lml  = self.N*self.P*SP.log(2*SP.pi)

        #2. logdet term
        lml += SP.sum(SP.log(self.cache['Sc2']))*self.N
        lml += 2*SP.log(SP.diag(self.cache['cholB'])).sum()

        #3. quatratic term
        lml += SP.sum(self.cache['LY']*self.cache['LY'])
        lml -= SP.sum(self.cache['WLY']*self.cache['BiWLY'])

        lml *= 0.5

        smartSum(self.time,'lml',TIME.time()-start)
        smartSum(self.count,'lml',1)

        return lml
开发者ID:PMBio,项目名称:mtSet,代码行数:28,代码来源:gp3kronSumLR.py

示例6: execute

 def execute(self):
     self.power_mat, self.thermal_expectation = self.full_calculation()
     n_chan = self.power_mat.shape[1]
     n_freq = self.power_mat.shape[0]
     # Calculate the the mean channel correlations at low frequencies.
     low_f_mat = sp.mean(self.power_mat[1:4 * n_chan + 1,:,:], 0).real
     # Factorize it into preinciple components.
     e, v = linalg.eigh(low_f_mat)
     self.low_f_mode_values = e
     # Make sure the eigenvalues are sorted.
     if sp.any(sp.diff(e) < 0):
         raise RuntimeError("Eigenvalues not sorted.")
     self.low_f_modes = v
     # Now subtract out the noisiest channel modes and see what is left.
     n_modes_subtract = 10
     mode_subtracted_power_mat = sp.copy(self.power_mat.real)
     mode_subtracted_auto_power = sp.empty((n_modes_subtract, n_freq))
     for ii in range(n_modes_subtract):
         mode = v[:,-ii]
         amp = sp.sum(mode[:,None] * mode_subtracted_power_mat, 1)
         amp = sp.sum(amp * mode, 1)
         to_subtract = amp[:,None,None] * mode[:,None] * mode
         mode_subtracted_power_mat -= to_subtract
         auto_power = mode_subtracted_power_mat.view()
         auto_power.shape = (n_freq, n_chan**2)
         auto_power = auto_power[:,::n_chan + 1]
         mode_subtracted_auto_power[ii,:] = sp.mean(auto_power, -1)
     self.subtracted_auto_power = mode_subtracted_auto_power
开发者ID:OMGitsHongyu,项目名称:analysis_IM,代码行数:28,代码来源:noise_power.py

示例7: tfidf

def tfidf(termFrequency):
	""" The student must code this. """
	gf = sp.sum(termFrequency,axis=1).astype(float)
	p = (termFrequency.T/gf).T
	g = sp.sum(p*sp.log(p+1)/sp.log(len(p[0,:])),axis=1) + 1
	a = (sp.log(termFrequency + 1).T*g).T
	return a
开发者ID:KathleenF,项目名称:numerical_computing,代码行数:7,代码来源:LSI.py

示例8: decode

def decode(file_name):
    border.rotate(file_name)
    image = Image.open("temp.png")
    q = border.find("temp.png")
    ind = sp.argmin(sp.sum(q, 1), 0)
    up_left = q[ind, 0] + 2
    up_top = q[ind, 1] + 2
    d_right = q[ind+1, 0] - 3
    d_bottom = q[ind-1, 1] - 3

    box = (up_left, up_top, d_right, d_bottom)
    region = image.crop(box)
    h_sum = sp.sum(region, 0)
    m = argrelmax(sp.correlate(h_sum, h_sum, 'same'))
    s = sp.average(sp.diff(m))
    m = int(round(d_right - up_left)/s)
    if m % 3 != 0:
        m += 3 - m % 3
    n = int(round(d_bottom - up_top)/s)
    if n % 4 != 0:
        n += 4 - n % 4
    s = int(round(s))+1

    region = region.resize((s*m, s*n), PIL.Image.ANTIALIAS)
    region.save("0.png")
    pix = region.load()
    matrix = mix.off(rec.matrix(pix, s, m, n))
    str2 = hamming.decode(array_to_str(matrix))

    return hamming.bin_to_str(str2)
开发者ID:aroundnothing,项目名称:optar,代码行数:30,代码来源:picture.py

示例9: sum2

def sum2(input, dtype=None):
    """
    Returns sum of all non-masked :obj:`Dds` elements-squared.
    
    :type input: :obj:`Dds`
    :param input: Input elements for which sum of squared-elements is calculated.
    :type dtype: :obj:`numpy.dtype` or dtype :obj:`str`
    :param dtype: Type used for summation of elements.
    
    :rtype: scalar
    :return: Sum of the squared-elements (i.e. :samp:`scipy.sum((input.asarray())**2, dtype)`).
    """
    mskVal = None
    if (hasattr(input, "mtype") and (input.mtype != None)):
        mskVal = input.mtype.maskValue()
    
    mpiComm = None
    if (hasattr(input, "mpi") and hasattr(input.mpi, "comm") and (input.mpi.comm != None)):
        mpiComm = input.mpi.comm

    inArr = input.subd.asarray()
    if (mskVal != None):
        s = sp.sum(sp.where(inArr != mskVal, inArr**2, 0), dtype=dtype)
    else:
        s = sp.sum(inArr**2, dtype=dtype)
    
    if (mpiComm != None):
        s = mpiComm.allreduce(s, mango.mpi.SUM)

    return s
开发者ID:pymango,项目名称:pymango,代码行数:30,代码来源:_core.py

示例10: _msge_with_gradient_underdetermined

    def _msge_with_gradient_underdetermined(self, data, delta, xvschema, skipstep):
        """ Calculate the mean squared generalization error and it's gradient for underdetermined equation system.
        """
        (l, m, t) = data.shape
        d = None
        j, k = 0, 0
        nt = sp.ceil(t / skipstep)
        for s in range(0, t, skipstep):
            trainset, testset = xvschema(s, t)

            (a, b) = self._construct_eqns(sp.atleast_3d(data[:, :, trainset]))
            (c, d) = self._construct_eqns(sp.atleast_3d(data[:, :, testset]))

            e = sp.linalg.inv(sp.eye(a.shape[0]) * delta ** 2 + a.dot(a.transpose()))

            cc = c.transpose().dot(c)

            be = b.transpose().dot(e)
            bee = be.dot(e)
            bea = be.dot(a)
            beea = bee.dot(a)
            beacc = bea.dot(cc)
            dc = d.transpose().dot(c)

            j += sp.sum(beacc * bea - 2 * bea * dc) + sp.sum(d ** 2)
            k += sp.sum(beea * dc - beacc * beea) * 4 * delta

        return j / (nt * d.size), k / (nt * d.size)
开发者ID:BioinformaticsArchive,项目名称:SCoT,代码行数:28,代码来源:var.py

示例11: _msge_with_gradient_overdetermined

    def _msge_with_gradient_overdetermined(self, data, delta, xvschema, skipstep):
        """ Calculate the mean squared generalization error and it's gradient for overdetermined equation system.
        """
        (l, m, t) = data.shape
        d = None
        l, k = 0, 0
        nt = sp.ceil(t / skipstep)
        for s in range(0, t, skipstep):
            #print(s,drange)
            trainset, testset = xvschema(s, t)

            (a, b) = self._construct_eqns(sp.atleast_3d(data[:, :, trainset]))
            (c, d) = self._construct_eqns(sp.atleast_3d(data[:, :, testset]))

            #e = sp.linalg.inv(np.eye(a.shape[1])*delta**2 + a.transpose().dot(a), overwrite_a=True, check_finite=False)
            e = sp.linalg.inv(sp.eye(a.shape[1]) * delta ** 2 + a.transpose().dot(a))

            ba = b.transpose().dot(a)
            dc = d.transpose().dot(c)
            bae = ba.dot(e)
            baee = bae.dot(e)
            baecc = bae.dot(c.transpose().dot(c))

            l += sp.sum(baecc * bae - 2 * bae * dc) + sp.sum(d ** 2)
            k += sp.sum(baee * dc - baecc * baee) * 4 * delta

        return l / (nt * d.size), k / (nt * d.size)
开发者ID:BioinformaticsArchive,项目名称:SCoT,代码行数:27,代码来源:var.py

示例12: test_Event_Activity_ground_motion_model_logic_split

 def test_Event_Activity_ground_motion_model_logic_split(self):      
     num_events = 6
     max_weights = 5
     ea = Event_Activity(num_events)
     indexes = arange(6)
     activity = array((indexes*10, indexes*20))
     
     ea.set_event_activity(activity, indexes)
     atten_model_weights = [array([.4, .6]),array([.1, .4, .5])]
     a = DummyEventSet()
     b = DummyEventSet()
     source_model = [a, b]
     #event_set_indexes = [array([0,1,3]), array([2,4])]
     event_set_indexes = [[0,1,3], [2,4]]
     for sp, esi, amw in map(None, source_model, event_set_indexes,
                             atten_model_weights):
         sp.atten_model_weights = amw
         sp.event_set_indexes = esi
     source_model = Source_Model(source_model) 
         
     ea.ground_motion_model_logic_split(source_model, apply_weights=True)   
     self.assert_(allclose(sum(ea.event_activity), sum(activity)))
     self.assert_(allclose(ea.event_activity[0, 0, 0, 3], 12.))
     self.assert_(allclose(ea.event_activity[0, 0, 0, 4], 4.))
     self.assert_(allclose(ea.event_activity[0, 0, 1, 3], 24.))
     self.assert_(allclose(ea.event_activity[0, 0, 1, 4], 8.))
开发者ID:dynaryu,项目名称:eqrm,代码行数:26,代码来源:test_event_set.py

示例13: _update_network

def _update_network(network, net):
    # Infer Np and Nt from length of given prop arrays in file
    for element in ['pore', 'throat']:
        N = [_sp.shape(net[i])[0] for i in net.keys() if i.startswith(element)]
        if N:
            N = _sp.array(N)
            if _sp.all(N == N[0]):
                if (network._count(element) == N[0]) \
                        or (network._count(element) == 0):
                    network.update({element+'.all': _sp.ones((N[0],),
                                                             dtype=bool)})
                    net.pop(element+'.all', None)
                else:
                    raise Exception('Length of '+element+' data in file ' +
                                    'does not match network')
            else:
                raise Exception(element+' data in file have inconsistent ' +
                                'lengths')

    # Add data on dummy net to actual network
    for item in net.keys():
        # Try to infer array types and change if necessary
        # Chcek for booleans disguised and 1's and 0's
        num0s = _sp.sum(net[item] == 0)
        num1s = _sp.sum(net[item] == 1)
        if (num1s + num0s) == _sp.shape(net[item])[0]:
            net[item] = net[item].astype(bool)
        # Write data to network object
        if item not in network:
            network.update({item: net[item]})
        else:
            logger.warning('\''+item+'\' already present')
    return network
开发者ID:TomTranter,项目名称:OpenPNM,代码行数:33,代码来源:IO.py

示例14: score_samples

    def score_samples(self, X, y=None):
        """Compute the negative weighted log probabilities for each sample.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        log_prob : array, shape (n_samples, n_clusters)
            Log probabilities of each data point in X.
        """
        X = check_array(X, copy=False, order='C', dtype=sp.float64)
        nt, d = X.shape
        K = sp.empty((nt, self.C))

        # Start the prediction for each class
        for c in xrange(self.C):
            # Compute the constant term
            K[:, c] = self.logdet[c] - 2*sp.log(self.prop[c]) + self.cst

            # Remove the mean
            Xc = X - self.mean[c]

            # Do the projection
            Px = sp.dot(Xc,
                        sp.dot(self.Q[c], self.Q[c].T))
            temp = sp.dot(Px, self.Q[c]/sp.sqrt(self.a[c]))
            K[:, c] += sp.sum(temp**2, axis=1)
            K[:, c] += sp.sum((Xc - Px)**2, axis=1)/self.b[c]

        return -K
开发者ID:mfauvel,项目名称:HDDA,代码行数:34,代码来源:hdda.py

示例15: test_set_boundary_conditions_bctypes

    def test_set_boundary_conditions_bctypes(self):
        self.alg.setup(invading_phase=self.water,
                       defending_phase=self.air,
                       trapping=True)
        Ps = sp.random.randint(0, self.net.Np, 10)

        self.alg.set_boundary_conditions(pores=Ps, bc_type='inlets')
        assert sp.sum(self.alg['pore.inlets']) == sp.size(sp.unique(Ps))
        self.alg['pore.inlets'] = False

        self.alg.set_boundary_conditions(pores=Ps, bc_type='outlets')
        assert sp.sum(self.alg['pore.outlets']) == sp.size(sp.unique(Ps))
        self.alg['pore.outlets'] = False

        self.alg.set_boundary_conditions(pores=Ps, bc_type='residual')
        assert sp.sum(self.alg['pore.residual']) == sp.size(sp.unique(Ps))
        self.alg['pore.residual'] = False

        flag = False
        try:
            self.alg.set_boundary_conditions(pores=Ps, bc_type='bad_type')
        except:
            flag = True
        assert flag

        flag = False
        try:
            self.alg.set_boundary_conditions(bc_type=None, mode='bad_type')
        except:
            flag = True
        assert flag
开发者ID:MichaelHoeh,项目名称:OpenPNM,代码行数:31,代码来源:DrainageTest.py


注:本文中的scipy.sum函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。