当前位置: 首页>>代码示例>>Python>>正文


Python scipy.subtract函数代码示例

本文整理汇总了Python中scipy.subtract函数的典型用法代码示例。如果您正苦于以下问题:Python subtract函数的具体用法?Python subtract怎么用?Python subtract使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了subtract函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: logloss

 def logloss(self, y, pred):
     epsilon = 1e-15
     pred = sp.maximum(epsilon, pred)
     pred = sp.minimum(1-epsilon, pred)
     ll = sum(y*sp.log(pred) + sp.subtract(1,y)*sp.log(sp.subtract(1,pred)))
     ll = ll * -1.0/len(y)
     return ll
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:7,代码来源:evaluator.py

示例2: llfun

def llfun(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1 - epsilon, pred)
    ll = sum(act * sp.log(pred) + sp.subtract(1, act) * sp.log(sp.subtract(1, pred)))
    ll = ll * -1.0 / len(act)
    return ll
开发者ID:trein,项目名称:criteo-challenge,代码行数:7,代码来源:training.py

示例3: logloss

def logloss(act, pred):
    epsilon = 1e-4
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = -1.0/len(act) * sum(act*sp.log(pred) +
            sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    return ll
开发者ID:JakeMick,项目名称:kaggle,代码行数:7,代码来源:derp.py

示例4: logloss

def logloss(Y_true, Y_pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, Y_pred)
    pred = sp.minimum(1-epsilon, Y_pred)
    ll = sum(Y_true*sp.log(pred) + sp.subtract(1,Y_true)*sp.log(sp.subtract(1,Y_pred)))
    ll = ll * -1.0/len(Y_true)
    return ll
开发者ID:amovschin,项目名称:NervousBreakDown,代码行数:7,代码来源:train_exist_mask.py

示例5: evaluate_ll

def evaluate_ll(y, yhat):
    epsilon = 1e-15
    yhat = sp.maximum(epsilon, yhat)
    yhat = sp.minimum(1-epsilon, yhat)
    ll = sum(y*sp.log(yhat) + sp.subtract(1,y)*sp.log(sp.subtract(1,yhat)))
    ll = ll * -1.0/len(y)
    return ll
开发者ID:fengqi0423,项目名称:hahaha,代码行数:7,代码来源:evaluate.py

示例6: entropyloss

def entropyloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    el = sum(act*sp.log10(pred) + sp.subtract(1,act)*sp.log10(sp.subtract(1,pred)))
    el = el * -1.0/len(act)
    return el
开发者ID:DucQuang1,项目名称:dextra-mindef-2015,代码行数:7,代码来源:classify-xgb-native.py

示例7: binary_logloss

def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
开发者ID:Iflier,项目名称:keras,代码行数:7,代码来源:np_utils.py

示例8: logloss

 def logloss(actual, predict):
     epsilon = 1e-15
     predict = sp.maximum(epsilon, predict)
     predict = sp.minum(1 - epsilon, predict)
     loss = sum(actual * sp.log(predict) + sp.subtract(1, actual) * sp.log(sp.subtract(1, predict)))
     loss = loss * -1.0 / len(actual)
     return loss
开发者ID:rain1024,项目名称:avito,代码行数:7,代码来源:evaluate.py

示例9: logloss

def logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    ll = sum(y*sp.log(p) + sp.subtract(1,y)*sp.log(sp.subtract(1,p)))
    ll = ll * -1.0/len(y)
    return ll
开发者ID:AnthonySA,项目名称:Predict-click-through-rates-on-display-ads,代码行数:7,代码来源:py_lh_20Sep2014.py

示例10: llfun

def llfun(act, pred):
    p_true = pred[:, 1]
    epsilon = 1e-15
    p_true = sp.maximum(epsilon, p_true)
    p_true = sp.minimum(1 - epsilon, p_true)
    ll = sum(act * sp.log(p_true) + sp.subtract(1, act) * sp.log(sp.subtract(1, p_true)))
    ll = ll * -1.0 / len(act)
    return ll
开发者ID:mkneierV,项目名称:kaggle_avazu_benchmark,代码行数:8,代码来源:ml.py

示例11: logloss

 def logloss(self, act, pred):
     epsilon = 1e-15
     pred = sp.maximum(epsilon, pred)
     pred = sp.minimum(1-epsilon, pred)
     pred[pred >= 1] = 0.9999999
     ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
     ll = ll * -1.0/len(act)
     return ll
开发者ID:Kaisuke5,项目名称:kaggle_kobe_shoot,代码行数:8,代码来源:model2.py

示例12: logloss

def logloss(act, pred):
    epsilon = 1e-6
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    #print np.mean(pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
开发者ID:daxiongshu,项目名称:bnp,代码行数:8,代码来源:tensor1.py

示例13: log_loss

def log_loss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1 - epsilon, pred)
    ll = sum(act * sp.log(pred.astype(float)) + sp.subtract(1, act.astype(float)) * sp.log(
        sp.subtract(1, pred.astype(float))))
    ll = ll * -1.0 / len(act)
    return ll
开发者ID:kazarinov,项目名称:hccf,代码行数:8,代码来源:mathematics.py

示例14: logloss_1

def logloss_1(act, pred):
    act = act.flatten()
    pred = pred.flatten()
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
开发者ID:henrywang1,项目名称:HappyCat,代码行数:9,代码来源:learning_kernel.py

示例15: logloss

def logloss(act,pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon,pred)
    pred = sp.minimum(1-epsilon,pred)
    #实际上我觉得这个式子就是机器学习课程中的cost Function
    #sum(act*log(pred) + (1-a)*log(1-p))
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
开发者ID:yyn19951228,项目名称:MachineLearning,代码行数:9,代码来源:kobe.py


注:本文中的scipy.subtract函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。