当前位置: 首页>>代码示例>>Python>>正文


Python scipy.reshape函数代码示例

本文整理汇总了Python中scipy.reshape函数的典型用法代码示例。如果您正苦于以下问题:Python reshape函数的具体用法?Python reshape怎么用?Python reshape使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了reshape函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: MNEfit

def MNEfit(stim,resp,order):
    # in order for dlogloss to work, we need to know -<g(yt(n),xt)>data
    # == calculate the constrained averages over the data set
    Nsamples = sp.size(stim,0)
    Ndim = sp.size(stim,1)
    psp = sp.mean(sp.mean(resp)) #spike probability (first constraint)
    avg = (1.0*stim.T*resp)/(Nsamples*1.0)
    avgs = sp.vstack((psp,avg))
    if(order > 1):
        avgsqrd = (stim.T*1.0)*(sp.array(sp.tile(resp,(1,Ndim)))*sp.array(stim))/(Nsamples*1.0)
        avgsqrd = sp.reshape(avgsqrd,(Ndim**2,1))
        avgs = sp.vstack((avgs,avgsqrd))
    
    #initialize params:
    pstart = sp.log(1/avgs[0,0] - 1)
    pstart = sp.hstack((pstart,(.001*(2*sp.random.rand(Ndim)-1))))
    if(order > 1):
        temp = .0005*(2*sp.random.rand(Ndim,Ndim)-1)
        pstart = sp.hstack((pstart,sp.reshape(temp+temp.T,(1,Ndim**2))[0]))
    
    #redefine functions with fixed vals:
    def logLoss(p):
        return LLF.log_loss(p, stim, resp, order)
    def dlogLoss(p):
        return LLF.d_log_loss(p, stim, avgs, order)
    #run the function:
    #pfinal = opt.fmin_tnc(logLoss,pstart,fprime=dlogLoss)
    # conjugate-gradient:
    pfinal = opt.fmin_cg(logLoss,pstart,fprime=dlogLoss)
    #pfinal = opt.fmin(logLoss,pstart,fprime=dlogLoss)
    return pfinal
开发者ID:MarvinT,项目名称:pyMNE,代码行数:31,代码来源:MNEfit.py

示例2: KDTForest_ErrorCor

def KDTForest_ErrorCor(galleryL, probesL, ground_truth, K=3, forest_size=6,
                       numForests=5, binary_score=True):
    Np = len(probesL)
    gx = sp.array(galleryL)
    px = sp.array(probesL)
    
    ground_truth = sp.reshape(ground_truth,(Np,K)) if K==1 else ground_truth
    
    forests = []
    print "Building %d separate KDT Forests from input data..."%numForests
    for _idx in range(numForests):
        f = pyf.FLANN()
        _params = f.build_index(gx,algorithm='kdtree', trees=forest_size)
        forests.append(f)
    
    errs = []
    
    print "Testing %d Probe Points across %d KDT Forestsa"%(Np, numForests)
    for f in forests:
        print ".",
        sys.stdout.flush()
        [res, _ds] = f.nn_index(px, K)
        if K==1:
            res = sp.reshape(res,(Np,1))
        err_vec = compute_errors(res, ground_truth, binary_score=binary_score)
        errs.append( sp.reshape(err_vec, (Np,1) ) )
    print ""
      
    ErrM = sp.hstack(errs)
    return ErrM
开发者ID:Sciumo,项目名称:ProximityForest,代码行数:30,代码来源:ANN_ErrorCorrelations.py

示例3: steepest_descent

def steepest_descent(A, b, x0, tol=1e-8):
    """
    Uses the steepest descent method to find the x that satisfies Ax = b.

    Inputs:
        A: An m x n NumPy array
        b: An m x 1 NumPy array
        x0: An n x 1 NumPy array that represents the initial guess at a
            solution.
        tol (optional): The tolerance level for convergence. This is compared
                        against the norm(x_n+1 - x_n) each iteration.

    Outputs:
        x: The x that satisfies the equation.
    """
    A = sp.mat(A)
    b = sp.reshape(sp.mat(b),(b.size,1))


    def grad(A, b, x):
        """
        Find the gradient of ||Ax - b||
        Inputs:
            A: An m x n NumPy matrix.
            b: An m x 1 NumPy matrix.
            x: An n x a NumPy matrix.

        Outputs:
            grad: A NumPy matrix representing the gradient of ||Ax - b||
        """
        return np.mat(2  * A.T*(A*x - b))

    def solve_alpha_k(A, b, x):
        """
        Solves for alpha in the steepest descent algorithm
        x_n+1 = x_n - alpha * grad(x_n)

        Inputs:
            A: An m x n NumPy array
            b: An m x 1 NumPy array
            x: The x value where you want alpha to be defined for.

        Outputs:
            alpha: The alpha satisfying the algorithm above.
        """

        gradient = grad(A, b, x)
        return np.array(
            (gradient.T * gradient)/(2 * gradient.T * A.T * A * gradient))[0]



    xold = sp.reshape(sp.mat(x0),(x0.size,1))
    xnew = xold - grad(A, b, xold) * solve_alpha_k(A,b,xold)

    while la.norm(xold - xnew) > tol:
        xold = xnew
        xnew = xold - grad(A, b, xold) * solve_alpha_k(A,b,xold)

    return xnew
开发者ID:snowdj,项目名称:byu_macro_boot_camp,代码行数:60,代码来源:GeneralDescent.py

示例4: func

    def func(self, X, V):
        k = self.C.TFdata.k
        v1 = self.C.TFdata.v1
        w1 = self.C.TFdata.w1
        
        if k >=0:
            J_coords = self.F.sysfunc.J_coords
            w = sqrt(k)
        
            q = v1 - (1j/w)*matrixmultiply(self.F.sysfunc.J_coords,v1)
            p = w1 + (1j/w)*matrixmultiply(transpose(self.F.sysfunc.J_coords),w1)
            
            p /= linalg.norm(p)
            q /= linalg.norm(q)

            p = reshape(p,(p.shape[0],))
            q = reshape(q,(q.shape[0],))
            
            direc = conjugate(1/matrixmultiply(transpose(conjugate(p)),q))
            p = direc*p

            l1 = firstlyapunov(X, self.F.sysfunc, w, J_coords=J_coords, p=p, q=q)
            
            return array([l1])
        else:
            return array([1])
开发者ID:BenjaminBerhault,项目名称:Python_Classes4MAD,代码行数:26,代码来源:TestFunc.py

示例5: Au

def Au(U,GF,EpsArr,NX,NY,NZ):
    """Returns the result of matrix-vector multiplication
       by the system matrix A=I-GX
    """
    # reshaping input vector into 4-D array
    Uarr=sci.reshape(U,(NX,NY,NZ,3))
    # extended zero-padded arrays
    Uext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    Vext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    Jext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    JFext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    Uext[0:NX,0:NY,0:NZ,:]=Uarr
    # contrast current array
    s=0
    while s<=2:
        Jext[0:NX,0:NY,0:NZ,s]=Uext[0:NX,0:NY,0:NZ,s]*(EpsArr[0:NX,0:NY,0:NZ]-1.0)
        JFext[:,:,:,s]=fft.fftn(sci.squeeze(Jext[:,:,:,s]))
        s=s+1
    Vext[:,:,:,0]=Uext[:,:,:,0]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,0,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,0,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,0,2],JFext[:,:,:,2])))
    Vext[:,:,:,1]=Uext[:,:,:,1]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,1,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,1,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,1,2],JFext[:,:,:,2])))
    Vext[:,:,:,2]=Uext[:,:,:,2]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,2,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,2,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,2,2],JFext[:,:,:,2])))
    # reshaping output into column vector
    V=sci.reshape(Vext[0:NX,0:NY,0:NZ,:],(NX*NY*NZ*3,1))

    return V
开发者ID:the-iterator,项目名称:VIE,代码行数:34,代码来源:matvec.py

示例6: rerun_dfa

def rerun_dfa(chrom,xdata,mask,groups,names,DFs):
    """Run DFA in min app"""
    #extract vars from xdata
    slice = meancent(_slice(xdata,chrom))
    
    #split in to training and test
    tr_slice,cv_slice,ts_slice,tr_grp,cv_grp,ts_grp,tr_nm,cv_nm,ts_nm=_split(slice,groups,mask,names)
    
    #get indexes
    idx = scipy.arange(xdata.shape[0])[:,nA]
    tr_idx = scipy.take(idx,_index(mask,0),0)
    cv_idx = scipy.take(idx,_index(mask,1),0)
    ts_idx = scipy.take(idx,_index(mask,2),0)
    
    #model DFA on training samples
    u,v,eigs,dummy = cva(tr_slice,tr_grp,DFs)
    
    #project xval and test samples
    projUcv = scipy.dot(cv_slice,v)
    projUt = scipy.dot(ts_slice,v)
    
    uout = scipy.zeros((xdata.shape[0],DFs),'d')
    _put(uout,scipy.reshape(tr_idx,(len(tr_idx),)).tolist(),u)
    _put(uout,scipy.reshape(cv_idx,(len(cv_idx),)).tolist(),projUcv)
    _put(uout,scipy.reshape(ts_idx,(len(ts_idx),)).tolist(),projUt)
    
    return uout,v,eigs      
开发者ID:myw,项目名称:dataiap,代码行数:27,代码来源:fitfun.py

示例7: draw_cone

def draw_cone(event=None):
    # cone radius 1
    Radius1 = 30.0
    # cone radius 2
    Radius2 = 70.0
    # cone height
    Height = 90.0
    # The center point at one of the flat cone faces 
    Point = scipy.array([-25.0, -50.0, 50.0])
    Point = scipy.reshape(Point,(3,1))
    # The direction of the cone from the point given above 
    DirectionFromPoint = scipy.array([25.0, 50.0, 150.0])
    DirectionFromPoint = scipy.reshape(DirectionFromPoint,(3,1))
    # create the cone object
    MyCone = cone_from_point_height_directionvector_and_two_radii( \
                                                            Point, 
                                                            DirectionFromPoint,
                                                            Height,
                                                            Radius1,
                                                            Radius2 )

    MyConeShape = MyCone.Shape()
    ais_shape_MyConeShape = AIS_Shape( MyConeShape ).GetHandle()
    ais_context = display.GetContext().GetObject()
    ais_context.SetMaterial(    ais_shape_MyConeShape,  
                                Graphic3d.Graphic3d_NOM_STONE )
    ais_context.Display( ais_shape_MyConeShape ) 
开发者ID:NiSchultz,项目名称:pythonocc,代码行数:27,代码来源:Step4_3.py

示例8: condition

def condition(point,art_index):

    l = len(point.param['free'])
    a = len(point.param['artificial'])
    
    neq = point.neq
    dx = point.system.dx
    nx = len(point.u)/neq

    y0 = scipy.reshape(point.u,(neq,nx))
    
    left = scipy.zeros((neq,1),scipy.float64)
    right = scipy.zeros((neq,1),scipy.float64)
    left[:,0]=y0[:,0]
    right[:,0]=y0[:,-1]
    u=scipy.c_[left,y0,right]
    
    deriv = 1./(2*dx)*scipy.reshape(scipy.transpose(\
        u[:,2:]-u[:,:-2]),(nx*neq,))
    
    result = {}
    result['column'] = deriv
    result['row'] = deriv*dx
    result['d'] = scipy.zeros((l+a,),scipy.float64)
    result['eq_term'] = deriv*point.lambd[art_index]
    result['res'] = 0

    return result
开发者ID:pvnuffel,项目名称:riskmodel,代码行数:28,代码来源:artificial.py

示例9: ideal_data

def ideal_data(num, dimU, dimY, dimX, noise=1):
    """Linear system data"""
    # generate randomized linear system matrices
    A = randn(dimX, dimX)
    B = randn(dimX, dimU)
    C = randn(dimY, dimX)
    D = randn(dimY, dimU)

    # make sure state evolution is stable
    U, S, V = svd(A)
    A = dot(U, dot(diag(S / max(S)), V))
    U, S, V = svd(B)
    S2 = zeros((size(U,1), size(V,0)))
    S2[:,:size(U,1)] = diag(S / max(S))
    B = dot(U, dot(S2, V))

    # random input
    U = randn(num, dimU)

    # initial state
    X = reshape(randn(dimX), (1,-1))

    # initial output
    Y = reshape(dot(C, X[-1]) + dot(D, U[0]), (1,-1))

    # generate next state
    X = concatenate((X, reshape(dot(A, X[-1]) + dot(B, U[0]), (1,-1))))

    # and so forth
    for u in U[1:]:
        Y = concatenate((Y, reshape(dot(C, X[-1]) + dot(D, u), (1,-1))))
        X = concatenate((X, reshape(dot(A, X[-1]) + dot(B, u), (1,-1))))

    return U, Y + randn(num, dimY) * noise
开发者ID:riscy,项目名称:mllm,代码行数:34,代码来源:system_identifier.py

示例10: _generate_masked_mesh

 def _generate_masked_mesh(self, cell_mask=None):
     r"""
     Generates the mesh based on the cell mask provided
     """
     #
     if cell_mask is None:
         cell_mask = sp.ones(self.data_map.shape, dtype=bool)
     #
     # initializing arrays
     self._edges = sp.ones(0, dtype=str)
     self._merge_patch_pairs = sp.ones(0, dtype=str)
     self._create_blocks(cell_mask)
     #
     # building face arrays
     mapper = sp.ravel(sp.array(cell_mask, dtype=int))
     mapper[mapper == 1] = sp.arange(sp.count_nonzero(mapper))
     mapper = sp.reshape(mapper, (self.nz, self.nx))
     mapper[~cell_mask] = -sp.iinfo(int).max
     #
     boundary_dict = {
         'bottom':
             {'bottom': mapper[0, :][cell_mask[0, :]]},
         'top':
             {'top': mapper[-1, :][cell_mask[-1, :]]},
         'left':
             {'left': mapper[:, 0][cell_mask[:, 0]]},
         'right':
             {'right': mapper[:, -1][cell_mask[:, -1]]},
         'front':
             {'front': mapper[cell_mask]},
         'back':
             {'back': mapper[cell_mask]},
         'internal':
             {'bottom': [], 'top': [], 'left': [], 'right': []}
     }
     #
     # determining cells linked to a masked cell
     cell_mask = sp.where(~sp.ravel(cell_mask))[0]
     inds = sp.in1d(self._field._cell_interfaces, cell_mask)
     inds = sp.reshape(inds, (len(self._field._cell_interfaces), 2))
     inds = inds[:, 0].astype(int) + inds[:, 1].astype(int)
     inds = (inds == 1)
     links = self._field._cell_interfaces[inds]
     #
     # adjusting order so masked cells are all on links[:, 1]
     swap = sp.in1d(links[:, 0], cell_mask)
     links[swap] = links[swap, ::-1]
     #
     # setting side based on index difference
     sides = sp.ndarray(len(links), dtype='<U6')
     sides[sp.where(links[:, 1] == links[:, 0]-self.nx)[0]] = 'bottom'
     sides[sp.where(links[:, 1] == links[:, 0]+self.nx)[0]] = 'top'
     sides[sp.where(links[:, 1] == links[:, 0]-1)[0]] = 'left'
     sides[sp.where(links[:, 1] == links[:, 0]+1)[0]] = 'right'
     #
     # adding each block to the internal face dictionary
     inds = sp.ravel(mapper)[links[:, 0]]
     for side, block_id in zip(sides, inds):
         boundary_dict['internal'][side].append(block_id)
     self.set_boundary_patches(boundary_dict, reset=True)
开发者ID:stadelmanma,项目名称:netl-AP_MAP_FLOW,代码行数:60,代码来源:__BlockMeshDict__.py

示例11: get_introns

    def get_introns(self):
        
        _introns = sp.reshape(self.exons1.ravel()[1:-1], (self.exons1.shape[0] - 1, 2))
        if len(self.exons2.shape) > 1:
            _introns = sp.r_[_introns, sp.reshape(self.exons2.ravel()[1:-1], (self.exons2.shape[0] - 1, 2))]

        return _introns
开发者ID:ratschlab,项目名称:spladder,代码行数:7,代码来源:event.py

示例12: quantize0

 def quantize0 (image):
     row,col = image.shape
     vect = reshape(image,(row*col,))
     vect = AA(int)((vect-min)*scalingFact + 0.5)
     vect = np.array(vect)
     vect = vect/scalingFact + min
     return reshape(vect,(row,col))
开发者ID:FabioMaster,项目名称:larpy,代码行数:7,代码来源:CTimage2blocks.py

示例13: crossValidate

def crossValidate(y, X, K=None, folds=3, model=None, returnModel=False):
    errors =  SP.empty(folds)
    n = y.shape[0]
    indexes = crossValidationScheme(folds,n)
    predictions = SP.empty(y.shape)
    alpha = []
    alphas = []
    msePath = []
    for cvRun in SP.arange(len(indexes)):
        testIndexes = indexes[cvRun]
        yTrain = y[~testIndexes]
        XTrain = X[~testIndexes]
        if K == None:
            model.fit(XTrain, yTrain)
            prediction = SP.reshape(model.predict(X[testIndexes]), (-1,1))
        else: # models having population structure
            KTrain = K[~testIndexes]
            KTrain = KTrain[:,~testIndexes]
            KTest=K[testIndexes]
            KTest=KTest[:,~testIndexes]
            model.reset()
            model.kernel = KTrain #TODO: make nice integration
            model.fit(XTrain, yTrain)
            prediction = SP.reshape(model.predict(X[testIndexes], k=KTest), (-1,1))
        predictions[testIndexes] = prediction
        errors[cvRun] = predictionError(y[testIndexes], prediction)
        print(('prediction error right now is', errors[cvRun]))
        if returnModel:
            alpha.append(model.alpha)
            alphas.append(model.alphas)
            msePath.append(model.mse_path)
    if returnModel:
        return indexes, predictions, errors, alpha, alphas, msePath
    else:
        return indexes, predictions, errors
开发者ID:PMBio,项目名称:limix,代码行数:35,代码来源:lmm_forest_utils.py

示例14: draw_arrow

def draw_arrow(event=None):
    # Length of the Arrow
    Arrowlength = 400.0
    # Shaft radius 
    RadiusOfArrowShaft = 20.0
    # Length of the the arrow heads cone
    LenghtOfArrowHead = 100.0
    # Radius of the the arrow heads cone
    RadiusOfArrowHead = 50.0
    # The center point at one of the flat cone faces 
    Point = scipy.array([-50.0, -50.0, 0.0])
    Point = scipy.reshape(Point,(3,1))
    # The direction of the cone from the point given above 
    DirectionFromPoint = scipy.array([-25.0, -50.0, -150.0])
    DirectionFromPoint = scipy.reshape(DirectionFromPoint,(3,1))
    # create the arrow shape
    # Look at the difference to the other functions and note that it is
    # also possible to create the shape in a function. If we do that we 
    # get a shape and not the object. 
    MyArrowShape = arrowShape(  Point, 
                                DirectionFromPoint,
                                Arrowlength,
                                RadiusOfArrowShaft,
                                LenghtOfArrowHead,
                                RadiusOfArrowHead )

    display.DisplayColoredShape( MyArrowShape , 'BLACK' ) 
开发者ID:NiSchultz,项目名称:pythonocc,代码行数:27,代码来源:Step4_1.py

示例15: pca_svd

def pca_svd(myarray,type='covar'):
    """Run principal components analysis (PCA) by singular
    value decomposition (SVD)
    
    >>> import scipy
    >>> a = scipy.array([[1,2,3],[0,1,1.5],[-1,-6,34],[8,15,2]])
    >>> a
    array([[  1. ,   2. ,   3. ],
           [  0. ,   1. ,   1.5],
           [ -1. ,  -6. ,  34. ],
           [  8. ,  15. ,   2. ]])
    >>> # There are four samples, with three variables each
    >>> tt,pp,pr,eigs = pca_svd(a)
    >>> tt
    array([[  5.86463567e+00,  -4.28370443e+00,   1.46798845e-01],
           [  6.65979784e+00,  -6.16620433e+00,  -1.25067331e-01],
           [ -2.56257861e+01,   1.82610701e+00,  -6.62877855e-03],
           [  1.31013526e+01,   8.62380175e+00,  -1.51027354e-02]])
    >>> pp
    array([[ 0.15026487,  0.40643255, -0.90123973],
           [ 0.46898935,  0.77318935,  0.4268808 ],
           [ 0.87032721, -0.48681703, -0.07442934]])
    >>> # This is the 'rotation matrix' - you can imagine colm labels
    >>> # of PC1, PC2, PC3 and row labels of variable1, variable2, variable3.
    >>> pr
    array([[  0.        ],
           [ 97.1073744 ],
           [ 98.88788958],
           [ 99.98141011]])
    >>> eigs
    array([[ 30.11765617],
           [ 11.57915467],
           [  0.1935556 ]])
    >>> a
    array([[  1. ,   2. ,   3. ],
           [  0. ,   1. ,   1.5],
           [ -1. ,  -6. ,  34. ],
           [  8. ,  15. ,   2. ]])
    """
    if type=='covar':
        myarray = _meancent(myarray)
    elif type=='corr':
        myarray = _autoscale(myarray)
    else:
        raise KeyError, "'type' must be one of 'covar or 'corr'"

    # I think this may run faster if myarray is converted to a matrix first.
    # (This should be tested - anyone got a large dataset?)
    # mymat = scipy.mat(myarray)
    u,s,v = scipy.linalg.svd(myarray)
    tt = scipy.dot(myarray,scipy.transpose(v))
    pp = v
    pr = (1-(s/scipy.sum(scipy.sum(myarray**2))))*100
    pr = scipy.reshape(pr,(1,len(pr)))
    pr = scipy.concatenate((scipy.array([[0.0]]),pr),1)
    pr = scipy.reshape(pr,(pr.shape[1],))
    eigs = s

    return tt,pp,pr[:,nA],eigs[:,nA]
开发者ID:jikhanjung,项目名称:modan,代码行数:59,代码来源:chemometrics.py


注:本文中的scipy.reshape函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。