本文整理汇总了Python中scipy.randn函数的典型用法代码示例。如果您正苦于以下问题:Python randn函数的具体用法?Python randn怎么用?Python randn使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了randn函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getPL
def getPL(self,r,RSSStd):
""" Get Power Level from a given distance
Parameters
----------
r : range
RSSStd : range standard deviation
Examples
--------
>>> M = PLSmodel(f=0.3,rssnp=2.64,d0=1,sigrss=3,method='mode')
>>> PL = M.getPL(16,1)
"""
if self.method =='OneSlope':
PL=self.OneSlope(r)
elif self.method == 'mode' or self.method == 'median' or self.method == 'mean':
PLmean = self.getPLmean(r)
try:
shPLmean = np.shape(PLmean)
Xrand = RSSStd*sp.randn(shPLmean[0])
except:
Xrand = RSSStd*sp.randn()
PL = PLmean+Xrand
else :
raise NameError('Pathloss method name')
return(PL)
示例2: _generate_null_shift_errors
def _generate_null_shift_errors(self):
"""
Returns null shift (constant bias) entries in a 6 entry array:
array([gx_n, gy_n, gz_n, ax_n, ay_n, az_n])
where the subscript 'n' stands for 'null shift'.
Note
-----
The constant bias is constant during the run, but varies from run-to-run.
If, for experimental purposes, you'ld like the SAME constant bias generated
every run, then this function should be modified to use the standard deviation
value (not multiplied by random number).
"""
# If the null-shift value has been generated once, then that value should be used.
# Otherwise, it will be generated and saved for the next call.
try:
return self._constant_bias
except AttributeError:
# Original code used a non-random null-shift. This could be acceptable if
# using a single vehicle, but unrealistic if used for a entire community. So now the null-shift is random.
accel_null = self._sqd['sigma_n_f'] * sp.randn(3)
gyro_null = self._sqd['sigma_n_g'] * sp.randn(3)
self._constant_bias = np.hstack((gyro_null, accel_null))
return self._constant_bias
示例3: fitPairwiseModel
def fitPairwiseModel(Y,XX=None,S_XX=None,U_XX=None,verbose=False):
N,P = Y.shape
""" initilizes parameters """
RV = fitSingleTraitModel(Y,XX=XX,S_XX=S_XX,U_XX=U_XX,verbose=verbose)
Cg = covariance.freeform(2)
Cn = covariance.freeform(2)
gp = gp2kronSum(mean(Y[:,0:2]),Cg,Cn,XX=XX,S_XX=S_XX,U_XX=U_XX)
conv2 = SP.ones((P,P),dtype=bool)
rho_g = SP.ones((P,P))
rho_n = SP.ones((P,P))
for p1 in range(P):
for p2 in range(p1):
if verbose:
print '.. fitting correlation (%d,%d)'%(p1,p2)
gp.setY(Y[:,[p1,p2]])
Cg_params0 = SP.array([SP.sqrt(RV['varST'][p1,0]),1e-6*SP.randn(),SP.sqrt(RV['varST'][p2,0])])
Cn_params0 = SP.array([SP.sqrt(RV['varST'][p1,1]),1e-6*SP.randn(),SP.sqrt(RV['varST'][p2,1])])
params0 = {'Cg':Cg_params0,'Cn':Cn_params0}
conv2[p1,p2],info = OPT.opt_hyper(gp,params0,factr=1e3)
rho_g[p1,p2] = Cg.K()[0,1]/SP.sqrt(Cg.K().diagonal().prod())
rho_n[p1,p2] = Cn.K()[0,1]/SP.sqrt(Cn.K().diagonal().prod())
conv2[p2,p1] = conv2[p1,p2]; rho_g[p2,p1] = rho_g[p1,p2]; rho_n[p2,p1] = rho_n[p1,p2]
RV['Cg0'] = rho_g*SP.dot(SP.sqrt(RV['varST'][:,0:1]),SP.sqrt(RV['varST'][:,0:1].T))
RV['Cn0'] = rho_n*SP.dot(SP.sqrt(RV['varST'][:,1:2]),SP.sqrt(RV['varST'][:,1:2].T))
RV['conv2'] = conv2
#3. regularizes covariance matrices
offset_g = abs(SP.minimum(LA.eigh(RV['Cg0'])[0].min(),0))+1e-4
offset_n = abs(SP.minimum(LA.eigh(RV['Cn0'])[0].min(),0))+1e-4
RV['Cg0_reg'] = RV['Cg0']+offset_g*SP.eye(P)
RV['Cn0_reg'] = RV['Cn0']+offset_n*SP.eye(P)
RV['params0_Cg']=LA.cholesky(RV['Cg0_reg'])[SP.tril_indices(P)]
RV['params0_Cn']=LA.cholesky(RV['Cn0_reg'])[SP.tril_indices(P)]
return RV
示例4: setUp
def setUp(self):
np.random.seed(1)
# generate data
N = 400
s_x = 0.05
s_y = 0.1
X = (sp.linspace(0, 2, N) + s_x * sp.randn(N))[:, sp.newaxis]
Y = sp.sin(X) + s_y * sp.randn(N, 1)
Y -= Y.mean(0)
Y /= Y.std(0)
Xstar = sp.linspace(0, 2, 1000)[:, sp.newaxis]
# define mean term
F = 1.0 * (sp.rand(N, 2) < 0.2)
mean = lin_mean(Y, F)
# define covariance matrices
covar1 = SQExpCov(X, Xstar=Xstar)
covar2 = FixedCov(sp.eye(N))
covar = SumCov(covar1, covar2)
# define gp
self._gp = GP(covar=covar, mean=mean)
示例5: fit_krr_dskl_rks_result
def fit_krr_dskl_rks_result(X,Y,Xtest,Ytest,its=100,eta=.1,C=.001,nPredSamples=30,nExpandSamples=10, kernel=(GaussianKernel,(1.))):
# random gaussian for rks
Zrks = sp.randn(len(Y),X.shape[0]) / (kernel[1]**2)
Wrks = sp.randn(len(Y))
for it in range(1,its+1):
Wrks = step_dskl_rks_krr(X,Y,Wrks,Zrks,eta/it,C,nPredSamples,nExpandSamples)
return predict_krr_rks(Xtest,Wrks,Zrks)
示例6: test_converting_to_factors
def test_converting_to_factors():
test_data = DataFrame(
{
'colA': Series(randn(1, 5000).flatten() > 0),
'colB': Series(100 * randn(1, 5000).flatten()),
'colC': Series(100 + randn(1, 5000).flatten()),
'colD': Series(randn(1, 5000).flatten() > 0),
},
)
test_data['colA'] = test_data['colA'].map(str)
test_data['colD'] = test_data['colD'].map(str)
factor_cols = [('colA', 'True'),
('colD', 'True')]
rpy_test_df = com.convert_to_r_dataframe(test_data)
rpy_out_df = Rtools.convert_columns_to_factors(rpy_test_df, factor_cols)
test_cols = [('colA', 'factor'),
('colB', 'numeric'),
('colC', 'numeric'),
('colD', 'factor')]
for col, typ in test_cols:
if typ == 'factor':
yield eq_, rpy_out_df.rx2(col).nlevels, 2
elif typ == 'numeric':
yield ok_, (not hasattr(rpy_out_df.rx2(col), 'nlevels'))
示例7: test_far_apart_clusters_estimate_all
def test_far_apart_clusters_estimate_all(self):
cluster1 = sp.randn(40,1000)
cluster2 = sp.randn(40,1000) * 2
cluster2[0,:] += 10
clusterList1 = [cluster1[:,i]
for i in xrange(sp.size(cluster1,1))]
clusterList2 = [cluster2[:,i]
for i in xrange(sp.size(cluster2,1))]
total, pair = qa.overlap_fp_fn(
{1: clusterList1, 2: clusterList2})
self.assertLess(total[1][0], 1e-4)
self.assertLess(total[1][1], 1e-4)
self.assertLess(total[2][0], 1e-4)
self.assertLess(total[2][1], 1e-4)
self.assertLess(pair[1][2][0], 1e-4)
self.assertLess(pair[1][2][1], 1e-4)
self.assertLess(pair[2][1][0], 1e-4)
self.assertLess(pair[2][1][1], 1e-4)
self.assertGreater(total[1][0], 0.0)
self.assertGreater(total[1][1], 0.0)
self.assertGreater(total[2][0], 0.0)
self.assertGreater(total[2][1], 0.0)
self.assertGreater(pair[1][2][0], 0.0)
self.assertGreater(pair[1][2][1], 0.0)
self.assertGreater(pair[2][1][0], 0.0)
self.assertGreater(pair[2][1][1], 0.0)
示例8: simulate
def simulate(self,standardize=True):
self._update_cache()
RV = SP.zeros((self.N,self.P))
# region
Z = SP.randn(self.S,self.P)
Sc,Uc = LA.eigh(self.Cr.K())
Sc[Sc<1e-9] = 0
USh_c = Uc*Sc[SP.newaxis,:]**0.5
RV += SP.dot(SP.dot(self.Xr,Z),USh_c.T)
# background
Z = SP.randn(self.N,self.P)
USh_r = self.cache['Lr'].T*self.cache['Srstar'][SP.newaxis,:]**0.5
Sc,Uc = LA.eigh(self.Cg.K())
Sc[Sc<1e-9] = 0
USh_c = Uc*Sc[SP.newaxis,:]**0.5
RV += SP.dot(SP.dot(USh_r,Z),USh_c.T)
# noise
Z = SP.randn(self.N,self.P)
Sc,Uc = LA.eigh(self.Cn.K())
Sc[Sc<1e-9] = 0
USh_c = Uc*Sc[SP.newaxis,:]**0.5
RV += SP.dot(Z,USh_c.T)
# standardize
if standardize:
RV-=RV.mean(0)
RV/=RV.std(0)
return RV
示例9: _genBgTerm_fromXX
def _genBgTerm_fromXX(self,vTot,vCommon,XX,a=None,c=None):
"""
generate background term from SNPs
Args:
vTot: variance of Yc+Yi
vCommon: variance of Yc
XX: kinship matrix
a: common scales, it can be set for debugging purposes
c: indipendent scales, it can be set for debugging purposes
"""
vSpecific = vTot-vCommon
SP.random.seed(0)
if c==None: c = SP.randn(self.P)
XX += 1e-3 * SP.eye(XX.shape[0])
L = LA.cholesky(XX,lower=True)
# common effect
R = self.genWeights(self.N,self.P)
A = self.genTraitEffect()
if a is not None: A[0,:] = a
Yc = SP.dot(L,SP.dot(R,A))
Yc*= SP.sqrt(vCommon)/SP.sqrt(Yc.var(0).mean())
# specific effect
R = SP.randn(self.N,self.P)
Yi = SP.dot(L,SP.dot(R,SP.diag(c)))
Yi*= SP.sqrt(vSpecific)/SP.sqrt(Yi.var(0).mean())
return Yc, Yi
示例10: _sim_from
def _sim_from(self, set_covar='block', seed=None, qq=False):
##1. region term
if set_covar=='block':
Cr = self.block['Cr']
Cg = self.block['Cg']
Cn = self.block['Cn']
if set_covar=='rank1':
Cr = self.lr['Cr']
Cg = self.lr['Cg']
Cn = self.lr['Cn']
Lc = msqrt(Cr)
U, Sh, V = nla.svd(self.Xr, full_matrices=0)
Lr = sp.zeros((self.Y.shape[0], self.Y.shape[0]))
Lr[:, :Sh.shape[0]] = U * Sh[sp.newaxis, :]
Z = sp.randn(*self.Y.shape)
Yr = sp.dot(Lr, sp.dot(Z, Lc.T))
##2. bg term
Lc = msqrt(Cg)
Lr = self.XXh
Z = sp.randn(*self.Y.shape)
Yg = sp.dot(Lr, sp.dot(Z, Lc.T))
# noise terms
Lc = msqrt(Cn)
Z = sp.randn(*self.Y.shape)
Yn = sp.dot(Z, Lc.T)
# normalize
Y = Yr + Yg + Yn
if qq:
Y = gaussianize(Y)
Y-= Y.mean(0)
Y/= Y.std(0)
return Y
示例11: test_mixed_model
def test_mixed_model():
test_data = DataFrame(
{
'colA': Series(randn(1, 5000).flatten() > 0),
'colB': Series(100 * randn(1, 5000).flatten()),
'colC': Series(100 + randn(1, 5000).flatten()),
'colD': Series(randn(1, 5000).flatten() > 0),
},
)
test_data['colA'] = test_data['colA'].map(str)
test_data['colD'] = test_data['colD'].map(str)
factor_cols = [('colA', 'True'),
('colD', 'True')]
rpy_test_df = com.convert_to_r_dataframe(test_data)
rpy_test_df = Rtools.convert_columns_to_factors(rpy_test_df, factor_cols)
base_formula = Formula('colC ~ as.factor(colA) + colB')
rand_formula = Formula('~1|colD')
results = Rtools.R_linear_mixed_effects_model(rpy_test_df, base_formula, rand_formula)
print results['tTable']
ok_(('tTable' in results), 'Did not have the tTable in the results')
ok_(('as.factor(colA)False' in results['tTable'].index), 'Did not have the factor in the tTable')
ok_(('colB' in results['tTable'].index), 'Did not have the variable in the tTable')
示例12: gendat
def gendat(TWO_KERNEL,nInd,nSnp,nCovar,minMaf=0.05,maxMaf=0.4,minSigE2=0.5,maxSigE2=1,minSigG2=0.5,maxSigG2=1):
'''
Generate synthetic SNPs and phenotype.
SNPs are iid, and there is no population structure.
Phenotype y is generated from a LMM with SNPs in a PS kernel.
Returns:
covDat
y
psSnps
'''
if TWO_KERNEL:
psSnps=gensnps(nInd,nSnp,minMaf,maxMaf)
psK=psSnps.dot(psSnps.T)
psK+=1e-5*sp.eye(nInd)
psKchol=la.cholesky(psK)
else:
psSnps=None
covDat=sp.random.uniform(0,1,(nInd,nCovar))
covWeights=sp.random.uniform(-0.5,0.5,(nCovar,1))
sigE2=sp.random.uniform(low=minSigE2,high=maxSigE2)
sigG2=sp.random.uniform(low=minSigG2,high=maxSigG2)
##generate the phenotype using the background kernel and covariates
if TWO_KERNEL:
y_pop=sp.sqrt(sigG2)*psKchol.dot(sp.randn(nInd,1))
else:
y_pop=0
y_noise=sp.randn(nInd,1)*sp.sqrt(sigE2)
y=(covDat.dot(covWeights) + y_pop + y_noise).squeeze()
return covDat, y, psSnps
示例13: writeBackRepsAddNoise
def writeBackRepsAddNoise(wc1,wc2,y1,y2,geneName,n_reps):
for i in range(n_reps):
c1 = [geneName]
c2 = [geneName]
c1.extend(y1+SP.randn(y1.shape[0])*.1)
c2.extend(y2+SP.randn(y2.shape[0])*.1)
wc1.writerow(c1)
wc2.writerow(c2)
示例14: awgn
def awgn(sig,snrdb,sigpower=0):
"""Additive white gaussian noise. Assumes signal power is 0 dBW"""
if sp.iscomplexobj(sig):
noise = (sp.randn(*sig.shape) + 1j*sp.randn(*sig.shape))/math.sqrt(2)
else:
noise = sp.randn(*sig.shape)
noisev = 10**((sigpower - snrdb)/20)
return sig + noise*noisev
示例15: simulate_pheno
def simulate_pheno(self):
Yc = sp.dot(self.mean.F[0], sp.dot(self.mean.B[0], self.mean.A[0].T))
Z = sp.randn(self.covar.G.shape[1], self.covar.Cr.X.shape[1])
Yr = sp.dot(self.covar.G, sp.dot(Z, self.covar.Cr.X.T))
_S, _U = LA.eigh(self.covar.Cn.K()); _S[_S<0] = 0
Cn_h = _U*_S**0.5
Yn = sp.dot(sp.randn(*self.mean.Y.shape), Cn_h.T)
RV = Yc+Yr+Yn
return RV