本文整理汇总了Python中scipy.power函数的典型用法代码示例。如果您正苦于以下问题:Python power函数的具体用法?Python power怎么用?Python power使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了power函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: backward_pass
def backward_pass(self, a1L, a1R, a2L, a2LR, a2R, a3, z1Lb, z1LRb, z1Rb, z2b, xLb, xRb, t):
# Third Layer
if self.k == 2 :
r3= -t*self.sigmoid(-t*a3)
else :
r3 = a3 - t
grad3=sp.dot(r3,z2b.T)
# Second Layer
r3w3T = sp.dot(self.w3[:,:-1].T, r3)
r2L=r3w3T*a2LR*self.sigmoid(a2R)*self.divsigmoid(a2L)
r2R=r3w3T*a2LR*self.sigmoid(a2L)*self.divsigmoid(a2R)
r2LR=r3w3T*self.sigmoid(a2L)*self.sigmoid(a2R)
grad2L = sp.dot(r2L, z1Lb.T)
grad2LR = sp.dot(r2LR, z1LRb.T)
grad2R = sp.dot(r2R, z1Rb.T)
# First Layer
r1L = sp.power(1.0/sp.cosh(a1L),2)*(sp.dot(self.w2l[:,:-1].T, r2L)+sp.dot(self.w2lr[:,:self.H1].T, r2LR))
r1R = sp.power(1.0/sp.cosh(a1R),2)*(sp.dot(self.w2r[:,:-1].T, r2R)+sp.dot(self.w2lr[:,self.H1:-1].T, r2LR))
grad1L = sp.dot(r1L, xLb.T)
grad1R = sp.dot(r1R, xRb.T)
return grad3, grad2L, grad2LR, grad2R, grad1L, grad1R
示例2: Function
def Function(self, x, param):
Sp, alpha, beta, Ta = param
S0 = self.CalcS0(Ta)
x2 = (scipy.greater_equal(x, Ta) * (x - Ta))
#y = Sp * numpy.abs(scipy.power((scipy.e / (alpha*beta)), alpha)) * numpy.abs(scipy.power(x2, alpha)) * scipy.exp(-x2/beta) + S0
y = Sp * numpy.abs(scipy.power((scipy.e / (alpha*beta)), alpha) * scipy.power(x2, alpha) * scipy.exp(-x2/beta)) + S0
return y
示例3: DiffFunction
def DiffFunction(self, x, param):
Sp, alpha, beta, Ta = param
if x < Ta:
return 0
x2 = x - Ta
y = Sp * scipy.power((scipy.e / (alpha*beta)), alpha) * (alpha * scipy.power(x2, alpha - 1) * scipy.exp(-x2/beta) - scipy.power(x2, alpha) * scipy.exp(-x2/beta) / beta)
return y
示例4: setTransitionsFork
def setTransitionsFork(dimension):
""" setting transitions in the state space """
space_size = np.power(2, dimension)
transition = np.ndarray(shape=(space_size, space_size), dtype=bool)
transition.fill(False)
state1 = [0 for i in range(dimension)]
state2 = state1[:]
for i in range(dimension-1):
state2[1+i] = 1
state1[0] = 1
state2[0] = 1
transition[st2Ind(state1)][st2Ind(state2)] = True # forward transition
transition[st2Ind(state2)][st2Ind(state1)] = True # backward transition
state1 = state2[:]
state1 = [0 for i in range(dimension)]
state2 = state1[:]
for i in range(dimension-1):
state2[dimension-i-1] = 1
state1[0] = 1
state2[0] = 1
transition[st2Ind(state1)][st2Ind(state2)] = True # forward transition
transition[st2Ind(state2)][st2Ind(state1)] = True # backward transition
state1 = state2[:]
transition[0][np.power(2, (dimension-1))] = True
transition[np.power(2, (dimension-1))][0] = True
print 'Fork transitions'
printTransitions(transition, dimension)
return transition
示例5: calc_volume
def calc_volume(self):
"""calculate the volume over which the compound can move. We have
Cavg = mass/volume
"""
return sp.sum((sp.power(self.grid_edge[1:],2) -
sp.power(self.grid_edge[:-1],2))
) * sp.pi
示例6: r_ion_neutral
def r_ion_neutral(s,t,Ni,Nn,Ti,Tn):
""" This will calculate resonant ion - neutral reactions collision frequencies. See
table 4.5 in Schunk and Nagy.
Inputs
s - Ion name string
t - neutral name string
Ni - Ion density cm^-3
Nn - Neutral density cm^-3
Ti - Ion tempreture K
Tn - Neutral tempreture K
Outputs
nu_ineu - collision frequency s^-1
"""
Tr = (Ti+Tn)*0.5
sp1 = (s,t)
# from Schunk and Nagy table 4.5
nudict={('H+','H'):[2.65e-10,0.083],('He+','He'):[8.73e-11,0.093], ('N+','N'):[3.84e-11,0.063],
('O+','O'):[3.67e-11,0.064], ('N2+','N'):[5.14e-11,0.069], ('O2+','O2'):[2.59e-11,0.073],
('H+','O'):[6.61e-11,0.047],('O+','H'):[4.63e-12,0.],('CO+','CO'):[3.42e-11,0.085],
('CO2+','CO'):[2.85e-11,0.083]}
A = nudict[sp1][0]
B = nudict[sp1][1]
if sp1==('O+','H'):
nu_ineu = A*Nn*sp.power(Ti/16.+Tn,.5)
elif sp1==('H+','O'):
nu_ineu = A*Nn*sp.power(Ti,.5)*(1-B*sp.log10(Ti))**2
else:
nu_ineu = A*Nn*sp.power(Tr,.5)*(1-B*sp.log10(Tr))**2
return nu_ineu
示例7: __init__
def __init__(self, *args, **kwargs):
MultiModalFunction.__init__(self, *args, **kwargs)
self._opts = (rand((self.numPeaks, self.xdim)) - 0.5) * 9.8
self._opts[0] = (rand(self.xdim) - 0.5) * 8
alphas = [power(self.maxCond, 2 * i / float(self.numPeaks - 2)) for i in range(self.numPeaks - 1)]
shuffle(alphas)
self._covs = [generateDiags(alpha, self.xdim, shuffled=True) / power(alpha, 0.25) for alpha in [self.optCond] + alphas]
self._R = orth(rand(self.xdim, self.xdim))
self._ws = [10] + [1.1 + 8 * i / float(self.numPeaks - 2) for i in range(self.numPeaks - 1)]
示例8: gvf
def gvf(x, Sp, alpha, beta, Ta, S0):
global scipy, numpy
y = (
Sp
* numpy.abs(scipy.power((scipy.e / (alpha * beta)), alpha))
* numpy.abs(scipy.power((x - Ta), alpha))
* scipy.exp(-(x - Ta) / beta)
+ S0
)
return y
示例9: freqs_b_by_freqs
def freqs_b_by_freqs(numFilters, lowFreq, highFreq, c, d, order = 1):
# Find the center frequencies of the filters from the begin and end frequencies
EarQ = c
minBW = d
vec = scipy.arange(numFilters, 0, -1)
freqs = -(EarQ*minBW) + scipy.exp(vec*(-scipy.log(highFreq + EarQ*minBW) + scipy.log(lowFreq + EarQ*minBW))/numFilters) * (highFreq + EarQ*minBW);
ERB = scipy.power((scipy.power((freqs/EarQ), order) + scipy.power(minBW, order)), (1.0 / order))
B = 1.019 * 2.0 * scipy.pi * ERB
return (freqs, B)
示例10: plotdata
def plotdata(ionofile_in,ionofile_fit,madfile,time1):
fig1,axmat =plt.subplots(2,2,facecolor='w',figsize=(10,10))
axvec = axmat.flatten()
paramlist = ['ne','te','ti','vo']
paramlisti = ['Ne','Te','Ti','Vi']
paramlistiname = ['$N_e$','$T_e$','$T_i$','$V_i$']
paramunit = ['$m^{-3}$','$^\circ$ K','$^\circ$ K','m/s']
boundlist = [[0.,7e11],[500.,3200.],[500.,2500.],[-500.,500.]]
IonoF = IonoContainer.readh5(ionofile_fit)
IonoI = IonoContainer.readh5(ionofile_in)
gfit = GeoData(readIono,[IonoF,'spherical'])
ginp = GeoData(readIono,[IonoI,'spherical'])
data1 = GeoData(readMad_hdf5,[madfile,['nel','te','ti','vo','dnel','dte','dti','dvo']])
data1.data['ne']=sp.power(10.,data1.data['nel'])
data1.data['dne']=sp.power(10.,data1.data['dnel'])
t1,t2 = data1.timelisting()[340]
handlist = []
for inum,iax in enumerate(axvec):
ploth = rangevsparam(data1,data1.dataloc[0,1:],time1,gkey=paramlist[inum],fig=fig1,ax=iax,it=False)
handlist.append(ploth[0])
ploth = rangevsparam(ginp,ginp.dataloc[0,1:],0,gkey=paramlisti[inum],fig=fig1,ax=iax,it=False)
handlist.append(ploth[0])
ploth = rangevsparam(gfit,gfit.dataloc[0,1:],0,gkey=paramlisti[inum],fig=fig1,ax=iax,it=False)
handlist.append(ploth[0])
iax.set_xlim(boundlist[inum])
iax.set_ylabel('Altitude in km')
iax.set_xlabel(paramlistiname[inum]+' in '+paramunit[inum])
# with error bars
plt.tight_layout()
fig1.suptitle('Comparison Without Error Bars\nPFISR Data Times: {0} to {1}'.format(t1,t2))
plt.subplots_adjust(top=0.9)
plt.figlegend( handlist[:3], ['PFISR', 'SimISR Input','SimISR Fit'], loc = 'lower center', ncol=5, labelspacing=0. )
fig2,axmat2 =plt.subplots(2,2,facecolor='w',figsize=(10,10))
axvec2 = axmat2.flatten()
handlist2 = []
for inum,iax in enumerate(axvec2):
ploth = rangevsparam(data1,data1.dataloc[0,1:],time1,gkey=paramlist[inum],gkeyerr='d'+paramlist[inum],fig=fig2,ax=iax,it=False)
handlist2.append(ploth[0])
ploth = rangevsparam(ginp,ginp.dataloc[0,1:],0,gkey=paramlisti[inum],fig=fig2,ax=iax,it=False)
handlist2.append(ploth[0])
ploth = rangevsparam(gfit,gfit.dataloc[0,1:],0,gkey=paramlisti[inum],gkeyerr='n'+paramlisti[inum],fig=fig2,ax=iax,it=False)
handlist2.append(ploth[0])
iax.set_xlim(boundlist[inum])
iax.set_ylabel('Altitude in km')
iax.set_xlabel(paramlistiname[inum]+' in '+paramunit[inum])
plt.tight_layout()
fig2.suptitle('Comparison With Error Bars\nPFISR Data Times: {0} to {1}'.format(t1,t2))
plt.subplots_adjust(top=0.9)
plt.figlegend( handlist2[:3], ['PFISR', 'SimISR Input','SimISR Fit'], loc = 'lower center', ncol=5, labelspacing=0. )
return (fig1,axvec,handlist,fig2,axvec2,handlist2)
示例11: calc_mass
def calc_mass(self, conc_r, split=0):
"""calculate the mass of component present given value in cell center
This is given by 2 \pi int_r1^r2 C(r)r dr
conc_r: concentration in self.grid
"""
if split == 1:
grid = self.grid_edge_sp1
elif split == 2:
grid = self.grid_edge_sp2
else:
grid = self.grid_edge
return sp.sum(conc_r * (sp.power(grid[1:], 2) -
sp.power(grid[:-1], 2))
) * sp.pi
示例12: f_L
def f_L(q,a_1,a_2,a_3):
'''integrand of the static geometrical tensor
Parameters
----------
'q' = free variable for the geometrical tensor
'a_1,a_2,a_3' = three axes of the ellipsoid (in nm)
Returns
-------
'L' = integrand of the static geometrical tensor'''
L = sp.power(q+a_1**2,-1.5)*sp.power(q+a_2**2,-0.5)*sp.power(q+a_3**2,-0.5)
return L
示例13: setNewScale
def setNewScale(self, state):
Names = ( 'Y_XScale', 'XLogScale', 'YLogScale', 'LogScale' )
Types = {'c' : 0, 's' : 1, 'r' : 2}
senderName = self.sender().objectName()
t, Type = senderName[0], Types[senderName[0]]
data = self.getData(Type)
Scale = data.Scale()
ui_obj = self.findUi([t + i for i in Names])
if senderName[1:] == Names[0]:
#ui_obj = getattr(self.ui, t + "LogScale")
if state:
Scale[1] = 2
data[:,1] = data[:,1] / data[:,0]
else:
Scale[1] = 0
data[:,1] = data[:,1] * data[:,0]
ui_obj[3].setEnabled(not ui_obj[0].isChecked())
else:
index = bool(senderName[1] != "X")
#ui_obj = getattr(self.ui, t + Names[0])
if Scale[index] != state:
if state == 1:
data[:,index] = sp.log10(data[:,index])
else:
data[:,index] = sp.power(10.,data[:,index])
Scale[index] = int(state)
ui_obj[0].setEnabled(not (ui_obj[1].isChecked() or ui_obj[2].isChecked()))
self.updateData(array = Array(data, Type = Type, scale = Scale))
示例14: filter
def filter(self, mode='soft'):
if self.level > self.max_dec_level():
clevel = self.max_dec_level()
else:
clevel = self.level
# decompose
coeffs = pywt.wavedec(self.sig, pywt.Wavelet(self.wt), \
mode=self.mode, \
level=clevel)
# threshold evaluation
th = sqrt(2 * log(len(self.sig)) * power(self.sigma, 2))
# thresholding
for (i, cAD) in enumerate(coeffs):
if mode == 'soft':
coeffs[i] = pywt.thresholding.soft(cAD, th)
elif mode == 'hard':
coeffs[i] = pywt.thresholding.hard(cAD, th)
# reconstruct
rec_sig = pywt.waverec(coeffs, pywt.Wavelet(self.wt), mode=self.mode)
if len(rec_sig) == (len(self.sig) + 1):
self.sig = rec_sig[:-1]
示例15: generateGaborMotherWavelet
def generateGaborMotherWavelet(self):
pitch = 440.0
sigma = 6.
NL = 48
NU = 39
print 'sampling rate:', self.fs, 'Hz'
fs = float(self.fs)
self.sample_duration = 10.
#asigma = 0.3
limit_t = 0.1
#zurashi = 1.
#NS = NL + NU + 1
f = sp.array([2**(i/12.) for i in range(NL+NU+1)]) * pitch*2**(-NL/12.)
f = f[:, sp.newaxis]
sigmao = sigma*10**(-3)*sp.sqrt(fs/f)
t = sp.arange(-limit_t, limit_t+1/fs, 1/fs)
inv_sigmao = sp.power(sigmao, -1)
inv_sigmao_t = inv_sigmao * t
t_inv_sigmao2 = sp.multiply(inv_sigmao_t, inv_sigmao_t)
omega_t = 2*sp.pi*f*t
gabor = (1/sp.sqrt(2*sp.pi))
gabor = sp.multiply(gabor, sp.diag(inv_sigmao))
exps = -0.5*t_inv_sigmao2+sp.sqrt(-1)*omega_t
self.gabor = gabor*sp.exp(exps)