本文整理汇总了Python中scipy.ones_like函数的典型用法代码示例。如果您正苦于以下问题:Python ones_like函数的具体用法?Python ones_like怎么用?Python ones_like使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ones_like函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setUp
def setUp(self):
SP.random.seed(1)
self.n_dimensions=2
self.n_samples = 100
self.setXy()
#self.X = SP.rand(self.n_samples,self.n_dimensions)
covar = limix.CCovSqexpARD(self.n_dimensions)
ll = limix.CLikNormalIso()
covar_params = SP.array([1,1,1])
lik_params = SP.array([0.5])
hyperparams0 = limix.CGPHyperParams()
hyperparams0['covar'] = covar_params
hyperparams0['lik'] = lik_params
self.constrainU = limix.CGPHyperParams()
self.constrainL = limix.CGPHyperParams()
self.constrainU['covar'] = +10*SP.ones_like(covar_params);
self.constrainL['covar'] = 0*SP.ones_like(covar_params);
self.constrainU['lik'] = +5*SP.ones_like(lik_params);
self.constrainL['lik'] = 0*SP.ones_like(lik_params);
self.gp=limix.CGPbase(covar,ll)
self.gp.setX(self.X)
self.gp.setParams(hyperparams0)
#self.genY()
self.gp.setY(self.y)
示例2: run
def run(self,phase,inlets,throat_prop='throat.capillary_pressure'):
r'''
Perform the algorithm
Parameters
----------
phase : OpenPNM Phase object
The phase to be injected into the Network. The Phase must have the
capillary entry pressure values for the system.
inlets : array_like
The list of inlet pores from which the Phase can enter the Network
throat_prop : string
The name of the throat property containing the capillary entry
pressure. The default is 'throat.capillary_pressure'.
'''
import heapq as hq
queue = []
hq.heapify(queue)
self._phase = phase
net = self._net
# Setup arrays and info
t_entry = phase[throat_prop]
t_sorted = sp.argsort(t_entry,axis=0) # Indices into t_entry giving a sorted list
t_order = sp.zeros_like(t_sorted)
t_order[t_sorted] = sp.arange(0,net.Nt) # Location in sorted list
t_inv = -sp.ones_like(net.Ts) # List for tracking throat invasion order
p_inv = -sp.ones_like(net.Ps) # List for tracking pore invasion order
p_inv[inlets] = 0 # Set inlet pores to invaded
# Perform initial analysis on input pores
Ts = net.find_neighbor_throats(pores=inlets)
[hq.heappush(queue,T) for T in t_order[Ts]] # Push the new throats to the heap
tcount = 1
while len(queue) > 0:
t = hq.heappop(queue) # Find throat at the top of the queue
t_next = t_sorted[t] # Extract actual throat number
t_inv[t_next] = tcount # Note invasion sequence
while (len(queue)>0) and (queue[0] == t): # If throat is duplicated
t = hq.heappop(queue) # Note: Preventing duplicate entries below might save some time here
Ps = net['throat.conns'][t_next] # Find pores connected to newly invaded throat
Ps = Ps[p_inv[Ps]<0] # Remove already invaded pores from Ps
if len(Ps)>0:
p_inv[Ps] = tcount # Note invasion sequence
Ts = net.find_neighbor_throats(pores=Ps) # Find connected throats
Ts = Ts[t_inv[Ts]<0] # Remove already invaded throats from Ts
[hq.heappush(queue,T) for T in t_order[Ts]] # Add new throats to queue
tcount += 1
self['throat.invasion_sequence'] = t_inv
self['pore.invasion_sequence'] = p_inv
示例3: _set_info
def _set_info(self,element='',label='',locations='',mode='merge'):
r'''
This is the actual info setter method, but it should not be called directly.
Wrapper methods have been created. Use set_pore_info and get_pore_info.
See Also
--------
set_pore_info, set_throat_info
'''
if type(locations)==list:
try: locations = getattr(self,'get_'+element+'_indices')(locations)
except: locations = sp.array(locations,ndmin=1)
elif type(locations)==sp.ndarray:
try: locations = getattr(self,'get_'+element+'_indices')(locations)
except : pass
if locations!='':
try:
locations = locations.name
label = locations
except: pass
if type(locations)==str: locations = getattr(self,'get_'+element+'_indices')([locations])
locations=sp.array(locations,ndmin=1)
if label:
if label=='all':
try:
old_label = getattr(self,'_'+element+'_info')[label]
if sp.shape(old_label)[0]<sp.shape(locations)[0]:
getattr(self,'_'+element+'_info')[label] = sp.ones_like(locations,dtype=bool)
self._logger.info('label=all for '+element+'has been updated to a bigger size!')
for info_labels in getattr(self,'_'+element+'_info').keys():
if info_labels!=label:
temp = sp.zeros((getattr(self,'num_'+element+'s')(),),dtype=bool)
temp[old_label] = getattr(self,'_'+element+'_info')[info_labels]
getattr(self,'_'+element+'_info')[info_labels] = temp
elif sp.shape(old_label)[0]>sp.shape(locations)[0]:
self._logger.error('To apply a new numbering label (label=all) to '+element+'s, size of the locations cannot be less than total number of '+element+'s!!')
except: getattr(self,'_'+element+'_info')[label] = sp.ones_like(locations,dtype=bool)
else:
try: getattr(self,'_'+element+'_info')[label]
except: getattr(self,'_'+element+'_info')[label] = sp.zeros((getattr(self,'num_'+element+'s')(),),dtype=bool)
if mode=='overwrite':
getattr(self,'_'+element+'_info')[label] = sp.zeros((getattr(self,'num_'+element+'s')(),),dtype=bool)
getattr(self,'_'+element+'_info')[label][locations] = True
elif mode=='remove': getattr(self,'_'+element+'_info')[label][locations] = False
elif mode=='merge': getattr(self,'_'+element+'_info')[label][locations] = True
else: self._logger.error('No label has been defined for these locations')
elif mode=='remove': del getattr(self,'_'+element+'_info')[label]
else: getattr(self,'_'+element+'_info')[label] = sp.zeros((getattr(self,'num_'+element+'s')(),),dtype=bool)
示例4: test_different_windows
def test_different_windows(self) :
window1 = sp.ones_like(self.wave1)
window1 += sp.sin(sp.arange(self.n)/40.0)
window2 = 2*sp.ones_like(self.wave1)
window2 += 2*sp.sin(sp.arange(self.n)/62.0)
window2[window2<0.5] = 0
wave1 = self.wave1*window1
wave2 = self.wave1*window2
power = np.windowed_power(wave1, window1, wave2, window2)
self.assertAlmostEqual(power[self.mode1]/self.amp1**2/self.n*4, 1.0, 3)
self.assertTrue(sp.allclose(power[:self.mode1], 0,
atol=self.amp1**2*self.n/1e3))
self.assertTrue(sp.allclose(power[self.mode1+1:], 0,
atol=self.amp1**2*self.n/1e3))
示例5: readMahalih5
def readMahalih5(filename,des_site):
""" This function will read the mahali GPS data into a GeoData data structure.
The user only has to give a filename and name of the desired site.
Input
filename - A string that holds the file name.
des_site - The site name. Should be listed in the h5 file in the
table sites.
"""
h5fn = Path(filename).expanduser()
with h5py.File(str(h5fn), "r", libver='latest') as f:
despnts = sp.where(f['data']['site']==des_site)[0]
# TODO: hard coded for now
doy = doy= f['data']['time'][despnts]
year = 2015*sp.ones_like(doy,dtype=int)
TEC = f['data']['los_tec'][despnts]
nTEC = f['data']['err_los_tec'][despnts]
vTEC = f['data']['vtec'][despnts]
az2sat = f['data']['az'][despnts]
el2sat = f['data']['az'][despnts]
piercelat = f['data']['pplat'][despnts]
piercelong = f['data']['pplon'][despnts]
satnum= f['data']['prn'][despnts]
recBias = f['data']['rec_bias'][despnts]
nrecBias = f['data']['err_rec_bias'][despnts]
# Make the integration time on the order of 15 seconds.
if (year==year[1]).all():
unixyear =(datetime(year[0],1,1,0,0,0,tzinfo=UTC) - EPOCH).total_seconds()
uttime = unixyear + sp.round_(24*3600*sp.column_stack((doy,doy+15./24./3600.))) # Making the difference in time to be a minute
else:
(y_u,y_iv) = np.unique(year,return_inverse=True)
unixyearu = sp.array([(datetime(iy,1,1,0,0,0,tzinfo=UTC) - EPOCH).total_seconds() for iy in y_u])
unixyear = unixyearu[y_iv]
uttime = unixyear + 24*3600*sp.column_stack((doy,doy+15./24./3600.))
data = {'TEC':TEC,'nTEC':nTEC,'vTEC':vTEC,'recBias':recBias,'nrecBias':nrecBias,'satnum':satnum,'az2sat':az2sat,'el2sat':el2sat}
coordnames = 'WGS84'
sensorloc = sp.nan*sp.ones(3)
dataloc = sp.column_stack((piercelat,piercelong, 350e3*sp.ones_like(piercelat)))
return (data,coordnames,dataloc,sensorloc,uttime)
示例6: test_convolve_normalization
def test_convolve_normalization(self) :
window = sp.ones_like(self.wave1)
power = npow.calculate_power(self.wave1)
window_power = npow.calculate_power(window)
# Convolving with the window function should do nothing for all ones.
convolved_power = npow.convolve_power(power, window_power)
self.assertTrue(sp.allclose(power, convolved_power))
示例7: _additionalInit
def _additionalInit(self):
# default setting
if self.slow_constant is None:
self.slow_constant = max(1, int(self.paramdim / 10.))
# get a few initial samples to work with
tmp = self.batch_size
self.batch_size = self.init_samples * tmp
self._collectGradients()
self._num_updates += self.init_samples
self.batch_size = tmp
# mean gradient vector
self._gbar = mean(self._last_gradients, axis=0)
# mean squared gradient
self._vbar = (mean(self._last_gradients ** 2, axis=0) + self.epsilon) * self.slow_constant
self._vpart = self._gbar ** 2 / self._vbar
# mean diagonal Hessian
#hs = clip(mean(self._last_diaghessians, axis=0), 1, 1 / self.epsilon)
#self._hbar = hs * self.slow_constant
self._hbar = mean(self._last_diaghessians, axis=0)
# time constants
self._taus = (ones_like(self.parameters) + self.epsilon) * 2#* self.init_samples
# for debugging
self._print_quantities = [('p', self.parameters),
('tau', self._taus),
('g', self._gbar),
('v', self._vbar),
('vpa', self._vpart),
('h', self._hbar),
]
示例8: _get_indices
def _get_indices(self,element,labels,return_indices,mode):
r'''
This is the actual method for getting indices, but should not be called
directly.
'''
if mode == 'union':
union = sp.zeros_like(self._get_info(element=element,label='all'),dtype=bool)
for item in labels: #iterate over labels list and collect all indices
union = union + self._get_info(element=element,label=item)
ind = union
elif mode == 'intersection':
intersect = sp.ones_like(self._get_info(element=element,label='all'),dtype=bool)
for item in labels: #iterate over labels list and collect all indices
intersect = intersect*self._get_info(element=element,label=item)
ind = intersect
elif mode == 'not_intersection':
not_intersect = sp.zeros_like(self._get_info(element=element,label='all'),dtype=int)
for item in labels: #iterate over labels list and collect all indices
info = self._get_info(element=element,label=item)
not_intersect = not_intersect + sp.int8(info)
ind = (not_intersect == 1)
elif mode == 'none':
none = sp.zeros_like(self._get_info(element=element,label='all'),dtype=int)
for item in labels: #iterate over labels list and collect all indices
info = self._get_info(element=element,label=item)
none = none - sp.int8(info)
ind = (none == 0)
if return_indices: ind = sp.where(ind==True)[0]
return ind
示例9: steepest_descent
def steepest_descent(X,Y, step=.001, tol=1e-5, maxiter=5000, bounds=[-5,5], res=.1):
w = betahat(X,Y)
a = sp.exp(X.dot(w))
yhat = (a.T/sp.sum(a, axis=1)).T
grad = X.T.dot(yhat-Y)
while la.norm(grad)>tol and maxiter > 0:
w = w - grad*step
a=sp.exp(X.dot(w))
yhat = (a.T/sp.sum(a,axis=1)).T
grad = X.T.dot(yhat-Y)
maxiter -= 1
rang = sp.arange(bounds[0],bounds[1]+res, res)
Xg, Yg = sp.meshgrid(rang, rang)
Xm = sp.c_[sp.ones_like(Xg.flatten()), Xg.flatten(), Yg.flatten()]
Xmdot = Xm.dot(w)
types = Xmdot.argmax(axis=1)
print Xm.shape
#plot the regions
c = ['b','r','g']
for i in range(Xmdot.shape[1]):
plot_on = types==i
plt.plot(Xm[plot_on,1], Xm[plot_on,2], c[i]+'.', X[Y[:,i]==1,1], X[Y[:,i]==1,2], c[i]+'o')
#plot the data segmented
#tmp = sp.where(Ydat[:,0]==True)[0]
#plt.plot(Xdat[tmp,1], Xdat[tmp,2], 'o', Xdat[~tmp,1], Xdat[~tmp,2], 'o')
plt.show()
示例10: compactness
def compactness(geometry, throat_perimeter='throat.perimeter',
throat_area='throat.area', **kwargs):
r"""
Mortensen et al. have shown that the Hagen-Poiseuille hydraluic resistance is
linearly dependent on the compactness. Defined as perimeter^2/area.
The dependence is not universal as shapes with sharp corners provide more
resistance than those that are more elliptical. Count the number of vertices
and apply the right correction.
"""
# Only apply to throats with an area
ts = geometry.throats()[geometry[throat_area] > 0]
P = geometry[throat_perimeter]
A = geometry[throat_area]
C = _sp.ones(geometry.num_throats())
C[ts] = P[ts]**2/A[ts]
verts = geometry['throat.offset_vertices']
alpha = _sp.ones_like(C)
for i in ts:
if len(verts[i]) == 3:
# Triangular Correction
alpha[i] = C[i]*(25/17) + (40*_sp.sqrt(3)/17)
elif len(verts[i]) == 4:
# Rectangular Correction
alpha[i] = C[i]*(22/7) - (65/3)
elif len(verts[i]) > 4:
# Approximate Elliptical Correction
alpha[i] = C[i]*(8/3) - (8*_sp.pi/3)
# For a perfect circle alpha = 8*pi so normalize by this
alpha /= 8*_sp.pi
# Very small throats could have values less than one
alpha[alpha < 1.0] = 1.0
return alpha
示例11: compactness
def compactness(target, throat_perimeter='throat.perimeter',
throat_area='throat.area'):
r"""
Mortensen et al. have shown that the Hagen-Poiseuille hydraluic resistance
is linearly dependent on the compactness. Defined as perimeter^2/area.
The dependence is not universal as shapes with sharp corners provide more
resistance than those that are more elliptical. Count the number of
vertices and apply the right correction.
Parameters
----------
target : OpenPNM Object
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
throat_perimeter : string
The dictionary key of the array containing the throat perimeter values.
throat_area : string
The dictionary key of the array containing the throat area values.
Returns
-------
alpha : NumPy ndarray
Array containing throat compactness values.
References
----------
Mortensen N.A, Okkels F., and Bruus H. Reexamination of Hagen-Poiseuille
flow: Shape dependence of the hydraulic resistance in microchannels.
Physical Review E, v.71, pp.057301 (2005).
"""
# Only apply to throats with an area
ts = target.throats()[target[throat_area] > 0]
P = target[throat_perimeter]
A = target[throat_area]
C = _sp.ones(target.num_throats())
C[ts] = P[ts]**2/A[ts]
alpha = _sp.ones_like(C)*8*_sp.pi
if 'throat.offset_vertices' in target.props():
verts = target['throat.offset_vertices']
for i in ts:
if ~_sp.any(_sp.isnan(verts[i])):
if len(verts[i]) == 3:
# Triangular Correction
alpha[i] = C[i]*(25/17) + (40*_sp.sqrt(3)/17)
elif len(verts[i]) == 4:
# Rectangular Correction
alpha[i] = C[i]*(22/7) - (65/3)
elif len(verts[i]) > 4:
# Approximate Elliptical Correction
alpha[i] = C[i]*(8/3) - (8*_sp.pi/3)
# For a perfect circle alpha = 8*pi so normalize by this
alpha /= 8*_sp.pi
# Very small throats could have values less than one
alpha[alpha < 1.0] = 1.0
return alpha
示例12: test_find_path_with_weights
def test_find_path_with_weights(self):
w = sp.ones_like(self.net.Ts)
w[0] = self.net.Nt + 1
a = misc.find_path(network=self.net,
pore_pairs=([0, 1]),
weights=w)
assert len(a['pores'][0]) > 2
assert len(a['throats'][0]) > 1
示例13: test_convolve
def test_convolve(self) :
window = sp.ones_like(self.wave1)
window += sp.sin(sp.arange(self.n)/50.0)
self.wave1 *= window
power = npow.calculate_power(self.wave1)
window_power = npow.calculate_power(window)
deconvolved_power = npow.deconvolve_power(power, window_power)
reconvolved_power = npow.convolve_power(deconvolved_power, window_power)
self.assertTrue(sp.allclose(power, reconvolved_power))
示例14: predict
def predict(self, XTest=None, k=None, mean=None):
# k is cross covariance KTestTrain
self.mean = mean
if self.mean is None:
self.mean = SP.ones_like(self.yTrain)*self.yTrain.mean()
if k is None:
k = self.kernel
Core = SP.dot(k, LA.inv((self.kernel + SP.eye(self.nTrain)*self.delta)))
return SP.dot(Core, self.yTrain-self.mean)
示例15: planeFromPoints
def planeFromPoints(points):
""" Produces a plane from N points using least squares, and returns of the form:
Z = aX + bY + c
Follows logic from http://www.velocityreviews.com/forums/t368189-re-linear-regression-in-3-dimensions.html
"""
x, y, z = zip(*points)
A = column_stack([x, y, ones_like(x)])
abc, residuals, rank, s = lstsq(A,z)
return abc