当前位置: 首页>>代码示例>>Python>>正文


Python scipy.median函数代码示例

本文整理汇总了Python中scipy.median函数的典型用法代码示例。如果您正苦于以下问题:Python median函数的具体用法?Python median怎么用?Python median使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了median函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_cluster_distribution

def get_cluster_distribution(g, method = 'average'):
	""" 
		The clustering coefficient distribution grouped by degree. Similar to the histogram shows the possible degree k,
		and average/median clustering coefficient of nodes with degree k in graph g.

		Parameters:
		-----------
			g: NetworkX Graph
			method: str, ('average', 'median'), (default = 'average')
		Returns:
		--------
			xdata, ydata, a 2-tuple of array, (k, avg_cc(V_k)), where V_k are the nodes with degree k
	"""
	g = to_undirected(g)
	k = nx.clustering(g)
	d = g.degree()
	ck = defaultdict(list)
	for n in g.nodes_iter():
		ck[d[n]].append(k[n])
	xdata, ydata = list(), list()
	
	if method == 'average':
		for x, y in ifilter(lambda x: x[0] > 1 and average(x[1]) > 0, ck.iteritems()):
			xdata.append(x)
			ydata.append(average(y))
	elif method == 'median':
		for x, y in ifilter(lambda x: x[0] > 1 and median(x[1]) > 0, ck.iteritems()):
			xdata.append(x)
			ydata.append(median(y))
	else:
		raise NameError("method should be 'average' or 'mean'")
	xdata = array(xdata)
	ydata = array(ydata)
	return(xdata, ydata)
开发者ID:kaeaura,项目名称:churn_prediction_proj,代码行数:34,代码来源:featureExtractor.py

示例2: plot_collated

def plot_collated(r_set="truth", infl_set="varinfl-0.25", subplots=True, save=False):
    d = cl("%s/output-2013/sim3-results_r-%s_%s"%(DATA_DIR,r_set, infl_set))
    coverages = SP.array(range(20,200,20) + range(200,1001,100)) #range(200,500,50) + range(500,1001,100))
    if r_set == "truth": coverages = SP.array(range(20,200,20) + range(200,500,50) + range(500,1001,100))
    afs = map(lambda x:"%.2f"%x, [0.7,0.85,0.99])
    models = ['sQTL','Smooth','ML','MP']
    p = 0
    colors = 'bgry'
    if subplots: PL.figure(figsize=(14,10))
    for feature in 'FX':
        for af in afs:
            if subplots: PL.subplot(2,3,p+1)
            else: PL.figure()
            p += 1
            lines = []
            
            for i,model in enumerate(models):
                I = SP.where(d[af][model][feature].var(axis=0) > 1e-10)[0]
                err = d[af][model][feature][:,I].var(axis=1)**0.5
                lines.append(PL.plot(coverages + 2*i,SP.median(d[af][model][feature][:,I],axis=1), "-o", linewidth=3, markersize=9, color=colors[i])[0])
                PL.errorbar(coverages + 2*i, SP.median(d[af][model][feature][:,I],axis=1), yerr=err, fmt="-o", linewidth=1, markersize=9,color=colors[i])
            PL.xticks(coverages)
            #PL.xlim(min(coverages),max(coverages))
            PL.title("%s %s - %s"%(infl_set, feature, af))
            PL.xlim(15,220)

            if feature == "X": PL.ylim(0,8)
            if p == 1:  PL.legend(lines, models)
            if save: PL.savefig("/Users/leopold/doc/write/manuscripts/2011_X_sQTL/figures/figure2013-3_2%s.pdf"%("ABCDEF"[p-1:p]))
    PL.show()
开发者ID:PMBio,项目名称:sqtl,代码行数:30,代码来源:collate_infer.py

示例3: PrintValues

def PrintValues( outfile, values,  options, prefix = "",titles = None):

    if options.flat or options.aggregate_column:

        if options.add_header:
            if prefix: outfile.write( "prefix\t" )
            
            if titles: outfile.write( "column\t" )
                
            print "\t".join( ("nval", "min", "max", "mean", "median", "stddev", "sum", "q1", "q3" ) )
        
        for x in range(len(values)):

            vals = values[x]

            if len(vals) == 0:

                if options.output_empty:
                    if titles: outfile.write( titles[x] + "\t" )
                    if prefix: outfile.write( prefix + "\t" )

                    outfile.write( "0" + "\tna" * 8  + "\n" )

                continue

            if titles: outfile.write( titles[x] + "\t" )
            if prefix: outfile.write( prefix + "\t" )

            vals.sort()
            if len(vals) > 4:
                q1 = options.value_format % vals[len(vals) // 4]
                q3 = options.value_format % vals[len(vals) * 3 // 4]
            else:
                q1 = options.value_format % vals[0]
                q3 = options.value_format % vals[-1]

            outfile.write( "\t".join( ( "%i" % len(vals),
                                        options.value_format % float(min(vals)),
                                        options.value_format % float(max(vals)),
                                        options.value_format % scipy.mean(vals),
                                        options.value_format % scipy.median(vals),
                                        options.value_format % scipy.std(vals),                                      
                                        options.value_format % reduce( lambda x, y: x+y, vals),
                                        q1, q3,
                                        )) + "\n")
            
    else:

        if titles:
            print "category\t%s" % string.join(titles,"\t")

        print "count\t%s"  % (string.join( map(lambda v: "%i" % len(v), values), "\t"))
        print "min\t%s"    % (string.join( map(lambda v: options.value_format % min(v), values), "\t"))
        print "max\t%s"    % (string.join( map(lambda v: options.value_format % max(v), values), "\t"))
        print "mean\t%s"   % (string.join( map(lambda v: options.value_format % scipy.mean(v), values), "\t"))
        print "median\t%s" % (string.join( map(lambda v: options.value_format % scipy.median(v), values), "\t"))
        print "stddev\t%s" % (string.join( map(lambda v: options.value_format % scipy.std(v), values), "\t"))
        print "sum\t%s"    % (string.join( map(lambda v: options.value_format % reduce( lambda x,y: x+y, v), values), "\t"))
        print "q1\t%s"     % (string.join( map(lambda v: options.value_format % scipy.stats.scoreatpercentile(v,per=25), values), "\t"))
        print "q3\t%s"     % (string.join( map(lambda v: options.value_format % scipy.stats.scoreatpercentile(v,per=75), values), "\t"))
开发者ID:siping,项目名称:cgat,代码行数:60,代码来源:data2stats.py

示例4: subtract_overscan

def subtract_overscan(data,x,y):

   """This function finds the median values in each of the four overscan
      regions and subtracts them from the appropriate regions of the
      input data file.  It then converts the results back to electrons
      rather than ADU"""

   # Define bias region limits
   bx1 = slice(0,15,1)
   bx2 = slice(2065,2080,1)
   y1 = slice(0,1024,1)
   y2 = slice(1024,2048,1)

   # Define limits of regions associated with the four amps
   x1 = slice(16,1040)
   x2 = slice(1040,2064)

   # Define median values of overscan regions from appropriate data regions
   newdata = data.astype(scipy.float32)
   overscan = scipy.zeros((4,1))
   overscan[0] = scipy.median(newdata[y1,bx1].ravel())
   overscan[1] = scipy.median(newdata[y2,bx1].ravel())
   overscan[2] = scipy.median(newdata[y1,bx2].ravel())
   overscan[3] = scipy.median(newdata[y2,bx2].ravel())

   # Subtract overscan
   newdata[y1,x1] = newdata[y1,x1] - overscan[0]
   newdata[y2,x1] = newdata[y2,x1] - overscan[1]
   newdata[y1,x2] = newdata[y1,x2] - overscan[2]
   newdata[y2,x2] = newdata[y2,x2] - overscan[3]

   newdata = newdata[y,x]
   return newdata
开发者ID:cdfassnacht,项目名称:CodeCDF,代码行数:33,代码来源:forsim_redux.py

示例5: WriteRadius

def WriteRadius(mali, identifiers, prefix="", gap_char="-"):
    """write percent identities in pairwise comparisons both for nucleotide acids and amino acids."""

    pides_na = []
    seq_aa = []

    for x in range(0, len(identifiers)):

        seq_aa.append(Genomics.TranslateDNA2Protein(mali[identifiers[x]]))

        for y in range(x + 1, len(identifiers)):
            if x == y:
                continue
            pides_na.append(MaliIO.getPercentIdentity(
                mali[identifiers[x]], mali[identifiers[y]], gap_char))

    pides_aa = []
    for x in range(0, len(identifiers) - 1):
        for y in range(x + 1, len(identifiers)):
            pides_aa.append(
                MaliIO.getPercentIdentity(seq_aa[x], seq_aa[y], gap_char))

    print "%s\tpide\t%i\t" % (prefix, len(pides_na)) +\
          string.join(map(lambda x: "%.2f" % x, (min(pides_na),
                                                 max(pides_na),
                                                 scipy.mean(pides_na),
                                                 scipy.median(pides_na),
                                                 numpy.std(pides_na))), "\t") + "\t" +\
          string.join(map(lambda x: "%.2f" % x, (min(pides_aa),
                                                 max(pides_aa),
                                                 scipy.mean(pides_aa),
                                                 scipy.median(pides_aa),
                                                 numpy.std(pides_aa))), "\t")
开发者ID:lesheng,项目名称:cgat,代码行数:33,代码来源:evaluate_mali.py

示例6: lossTraces

def lossTraces(fwrap, aclass, dim, maxsteps, storesteps=None, x0=None,
               initNoise=0., minLoss=1e-10, algoparams={}):
    """ Compute a number of loss curves, for the provided settings,
    stored at specific storestep points. """
    if not storesteps:
        storesteps = range(maxsteps + 1)
    
    # initial points, potentially noisy
    if x0 is None:
        x0 = ones(dim) + randn(dim) * initNoise
    
    # tracking progress by callback
    paramtraces = {'index':-1}
    def storer(a):
        lastseen = paramtraces['index']
        for ts in [x for x in storesteps if x > lastseen and x <= a._num_updates]:
            paramtraces[ts] = a.bestParameters.copy()
        paramtraces['index'] = a._num_updates
        
    # initialization    
    algo = aclass(fwrap, x0, callback=storer, **algoparams)
    print algo, fwrap, dim, maxsteps,
    
    # store initial step   
    algo.callback(algo)
    algo.run(maxsteps)

    # process learning curve
    del paramtraces['index']
    paramtraces = array([x for _, x in sorted(paramtraces.items())])
    oloss = mean(fwrap.stochfun.expectedLoss(ones(100) * fwrap.stochfun.optimum))
    ls = abs(fwrap.stochfun.expectedLoss(ravel(paramtraces)) - oloss) + minLoss
    ls = reshape(ls, paramtraces.shape)
    print median(ls[-1])
    return ls
开发者ID:bitfort,项目名称:py-optim,代码行数:35,代码来源:experiments.py

示例7: plotAllCombinations

def plotAllCombinations(aclasses, avariants,
                        fclasses, fvariants,
                        trials, maxsteps, maxbatchsize=10):
    fundic = {}    
    ploti = 1
    rows = sum([len(avariants[ac]) for ac in aclasses]) + len(aclasses) - 1
    cols = len(fvariants) * len(fclasses) + len(fclasses) - 1
    f_mid = int(median(range(len(fvariants))))
    for ac_id, aclass in enumerate(aclasses):
        a_mid = int(median(range(len(avariants[aclass]))))
        for as_id, aparams in enumerate(avariants[aclass]):
            if as_id == 0 and ac_id > 0:
                ploti += cols
            
            for fc_id, fclass in enumerate(fclasses):
                if fc_id not in fundic:
                    # shared samples across all uses of one function
                    fun = fclass()
                    fwrap = FunctionWrapper(trials, fun, record_samples=True)
                    fwrap.nextSamples(maxbatchsize * (maxsteps+10))
                    fundic[fc_id] = fwrap._seen
                data = fundic[fc_id]
                for fs_id, fsettings in enumerate(fvariants):
                    if fs_id == 0 and fc_id > 0:
                        ploti += 1
                    fun = fclass(**fsettings)
                    provider = DataFunctionWrapper(data, fun, shuffling=False)            
                    pylab.subplot(rows, cols, ploti); ploti += 1
                    plotHeatmap(provider, aclass, aparams, trials, maxsteps)
                    if ac_id == 0 and as_id == 0 and fs_id == f_mid:
                        pylab.title(fclass.__name__[5:])
                    if fs_id == 0 and as_id == a_mid:
                        pylab.ylabel(aclass.__name__[:6])
    pylab.subplots_adjust(left=0.1, bottom=0.01, right=0.99, top=0.9, wspace=0.05, hspace=0.05)        
开发者ID:Andres-Hernandez,项目名称:py-optim,代码行数:34,代码来源:test_comparisons.py

示例8: plot_hist_compare

   def plot_hist_compare(self,which_case):
        plt.ylabel('Percentage of points')
        plt.xlabel('Percentage RMS relative error')
        
        def yto_percent(y, x):
            s = str(sp.around((y/(len(self.REL_ERR)*1.0)*100),2))
            if matplotlib.rcParams['text.usetex'] is True:
                return s + r'$\%$'
            else:
                return s + '%'     

        def xto_percent(y, x):
            s = str(y*100)
            if matplotlib.rcParams['text.usetex'] is True:
                return s + r'$\%$'
            else:
                    return s + '%' 
        
        thermo1, thermo2, = self.select[which_case]
        #Plot the SU2 error
        i=0;
        self.REL_ERR = 0;
        for v in self.variables[sp.where\
        ((self.variables!=thermo1) * (self.variables!=thermo2))]:
            i=i+1;
            self.REL_ERR = self.REL_ERR + \
            ((getattr(self.SU2[which_case],v)-getattr(self.RandomSamples,v))/\
            (getattr(self.RandomSamples,v)))**2;
        self.REL_ERR = sp.sqrt(self.REL_ERR)/i
        plt.hist(self.REL_ERR, bins=25, color='k', alpha=0.3, label='SU2')
        print 'Error max SU2', max(self.REL_ERR)
        setattr(self.SU2[which_case],"median_ERR",sp.median(self.REL_ERR));
        
        #Plot the SciPy error
        i =0;
        self.REL_ERR = 0;
        for v in self.variables[sp.where\
        ((self.variables!=thermo1) * (self.variables!=thermo2))]:
            i=i+1;
            self.REL_ERR = self.REL_ERR + \
            ((getattr(self.SciPy[which_case],v)-getattr(self.RandomSamples,v))/\
            (getattr(self.RandomSamples,v)))**2;
        self.REL_ERR = sp.sqrt(self.REL_ERR)/i
        
        plt.hist(self.REL_ERR, bins=25, color='c', alpha=0.5, label='SciPy')
        print 'Error max SciPy', max(self.REL_ERR)
        setattr(self.SciPy[which_case],"median_ERR",sp.median(self.REL_ERR));

        
        formatter_y = FuncFormatter(yto_percent)
        formatter_x = FuncFormatter(xto_percent)
        plt.gca().yaxis.set_major_formatter(formatter_y)
        plt.gca().xaxis.set_major_formatter(formatter_x)
        plt.grid(which='both')
        plt.legend()

       
        return       
开发者ID:MatejKosec,项目名称:LUTStandAlone,代码行数:58,代码来源:ConvergenceLibrary.py

示例9: _printStuff

 def _printStuff(self):
     print self._num_updates,
     for n, a in self._print_quantities:
         #print n, type(a)
         if abs(median(a)) > 1e4 or abs(median(a)) < 1e-3:
             print n, median(a), '\t',
         else:
             print n, round(median(a), 4), '\t',
     print
开发者ID:Andres-Hernandez,项目名称:py-optim,代码行数:9,代码来源:vsgd.py

示例10: calculate_varPrior

def calculate_varPrior(disp_raw, disp_fitted, idx, varLogDispSamp):

    logRes = sp.log(disp_raw[idx]) - sp.log(disp_fitted[idx])
    stdLogRes = sp.median(abs(logRes - sp.median(logRes))) * 1.4826

    varLogRes = stdLogRes ** 2
    varPrior = varLogRes - varLogDispSamp

    return max(varPrior, 0.1)
开发者ID:jiahsinhuang,项目名称:spladder,代码行数:9,代码来源:spladder_test.py

示例11: __call__

 def __call__(self, x):
     res = median([self.f(x) for _ in range(int(self.resample_over))])
     if self.num_evals % self.batchsize == 0 and self.num_evals > 0:
         alt_res = median([self.f(x) for _ in range(int(self.resample_over))])
         self._adaptResampling(res, alt_res)
         res = 0.5 * res + 0.5 * alt_res
     self.recents[self.num_evals % self.batchsize] = res
     self.num_evals += 1
     return res
开发者ID:chenguodan,项目名称:pybrain,代码行数:9,代码来源:aptativeresampling.py

示例12: MAD

def MAD(a, c=0.6745):
    """
    Median Absolute Deviation along first axis of an array:

    median(abs(a - median(a))) / c

    """

    a = N.asarray(a, N.float64)
    d = N.multiply.outer(median(a), N.ones(a.shape[1:]))
    return median(N.fabs(a - d) / c)
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:11,代码来源:scale.py

示例13: mad_clipping

def mad_clipping(input_data, sigma_clip_level, return_length=False):
    medval = median(input_data)
    sigma = 1.4826 * median(abs(medval - input_data))
    high_sigma_clip_limit = medval + sigma_clip_level * sigma
    low_sigma_clip_limit = medval - sigma_clip_level * sigma
    clipped_data = input_data[(input_data>(low_sigma_clip_limit)) &            \
                              (input_data<(high_sigma_clip_limit))]
    new_medval = median(clipped_data)
    new_sigma = 1.4826 * median(abs(medval - clipped_data))
    if return_length:
        return new_medval, new_sigma, len(clipped_data)
    else:
        return new_medval, new_sigma
开发者ID:ckleinastro,项目名称:DECam_coaddition,代码行数:13,代码来源:coadd_images.py

示例14: mad_clipping

def mad_clipping(input_data, sigma_clip_level):
    medval = median(input_data)
    sigma = 1.48 * median(abs(medval - input_data))
    high_sigma_clip_limit = medval + sigma_clip_level * sigma
    low_sigma_clip_limit = medval - sigma_clip_level * sigma
    clipped_data = []
    for value in input_data:
        if (value > low_sigma_clip_limit) and (value < high_sigma_clip_limit):
            clipped_data.append(value)
    clipped_data_array = array(clipped_data)
    new_medval = median(clipped_data_array)
    new_sigma = 1.48 * median(abs(medval - clipped_data_array))
    return clipped_data_array, new_medval, new_sigma
开发者ID:ckleinastro,项目名称:aperture_photometry_scripts,代码行数:13,代码来源:photometry.py

示例15: __amp_detect

    def __amp_detect(self, x):
        
        ref = np.floor(self.min_ref_per*self.sr/1000.0)
        
        # HIGH-PASS FILTER OF THE DATA
        (b,a) = signal.ellip(2, 0.1, 40, [self.fmin_detect*2.0/self.sr,self.fmax_detect*2.0/self.sr], btype='bandpass', analog=0, output='ba')
        xf_detect = signal.filtfilt(b, a, x)
        (b,a) = signal.ellip(2, 0.1, 40, [self.fmin_sort*2.0/self.sr,self.fmax_sort*2.0/self.sr], btype='bandpass', analog=0, output='ba')
        xf = signal.filtfilt(b, a, x)
        
        
        noise_std_detect = scipy.median(np.abs(xf_detect))/0.6745;
        noise_std_sorted = scipy.median(np.abs(xf))/0.6745;
       
        thr = self.stdmin * noise_std_detect        #thr for detection is based on detected settings.
        thrmax = self.stdmax * noise_std_sorted     #thrmax for artifact removal is based on sorted settings.
        
        # LOCATE SPIKE TIMES
        nspk = 0;
        xaux = np.argwhere(xf_detect[self.w_pre+1:len(xf_detect)-self.w_post-1-1] > thr) + self.w_pre + 1
        xaux = np.resize(xaux,len(xaux))
        xaux0 = 0;
        index = []
        for i in range(len(xaux)):
            if xaux[i] >= (xaux0 + ref):
            # after find a peak it begin search after ref over the last xaux
                iaux = xf[xaux[i]:xaux[i]+np.floor(ref/2.0)].argmax(0)    # introduces alignment
                nspk = nspk + 1
                index.append(iaux + xaux[i])
                xaux0 = index[nspk-1];
        
        # SPIKE STORING (with or without interpolation)
        ls = self.w_pre + self.w_post
        spikes = np.zeros([nspk,ls+4])
        xf = np.concatenate((xf,np.zeros(self.w_post)),axis=0)
        
        for i in range(nspk):                          # Eliminates artifacts
            if np.max( np.abs( xf[index[i]-self.w_pre:index[i]+self.w_post] )) < thrmax :
                spikes[i,:] = xf[index[i]-self.w_pre-1:index[i]+self.w_post+3]
     
        aux = np.argwhere(spikes[:,self.w_pre] == 0)       #erases indexes that were artifacts
        if len(aux) != 0:
            aux = aux.reshape((1,len(aux)))[0]
            spikes = np.delete(spikes, aux, axis = 0)
            index = np.delete(index,aux)
 
        if self.interpolation == 'y':
            # Does interpolation
            spikes = self.__int_spikes(spikes)

        return spikes, thr, index
开发者ID:sergio2pi,项目名称:NeuroDB,代码行数:51,代码来源:spike.py


注:本文中的scipy.median函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。