本文整理汇总了Python中scipy.load函数的典型用法代码示例。如果您正苦于以下问题:Python load函数的具体用法?Python load怎么用?Python load使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: cv
def cv(nn_name,d_num = 10000,k_fold = 7,score_metrics = 'accuracy',verbose = 0):
suff = str(nn_name[:2])
if nn_name.find('calib') > 0:
X_data_name = 'train_data_icalib_'+ suff + '.npy'
y_data_name = 'labels_icalib_'+ suff + '.npy'
else:
X_data_name = 'train_data_'+ suff + '.npy'
y_data_name = 'labels_'+ suff + '.npy'
X,y = sp.load(X_data_name),sp.load(y_data_name)
d_num = min(len(X),d_num)
X = X[:d_num]
y = y[:d_num]
rates12 = sp.hstack((0.05 * sp.ones(25,dtype=sp.float32),0.005*sp.ones(15,dtype=sp.float32),0.0005*sp.ones(10,dtype=sp.float32)))
rates24 = sp.hstack((0.01 * sp.ones(25,dtype=sp.float32),0.0001*sp.ones(15,dtype=sp.float32)))
rates48 = sp.hstack ([0.05 * sp.ones(15,dtype=sp.float32),0.005*sp.ones(10,dtype=sp.float32) ])
if nn_name == '48-net':
X12 = sp.load('train_data_12.npy')[:d_num]
X24 = sp.load('train_data_24.npy')[:d_num]
elif nn_name == '24-net':
X12 = sp.load('train_data_12.npy')[:d_num]
if score_metrics == 'accuracy':
score_fn = accuracy_score
else:
score_fn = f1_score
scores = []
iteration = 0
for t_indx,v_indx in util.kfold(X,y,k_fold=k_fold):
nn = None
X_train,X_test,y_train,y_test = X[t_indx], X[v_indx], y[t_indx], y[v_indx]
#print('\t \t',str(iteration+1),'fold out of ',str(k_fold),'\t \t' )
if nn_name == '24-net':
nn = Cnnl(nn_name = nn_name,l_rates=rates24,subnet=Cnnl(nn_name = '12-net',l_rates=rates12).load_model(
'12-net_lasagne_.pickle'))
nn.fit(X = X_train,y = y_train,X12 = X12[t_indx])
elif nn_name == '48-net':
nn = Cnnl(nn_name = nn_name,l_rates=rates48,subnet=Cnnl(nn_name = '24-net',l_rates=rates24,subnet=Cnnl(nn_name = '12-net',l_rates=rates12).load_model(
'12-net_lasagne_.pickle')).load_model('24-net_lasagne_.pickle'))
nn.fit(X = X_train,y = y_train,X12 = X12[t_indx],X24 = X24[t_indx])
else:
nn = Cnnl(nn_name = nn_name,l_rates=rates12,verbose=verbose)
nn.fit(X = X_train,y = y_train)
if nn_name == '24-net':
y_pred = nn.predict(X_test,X12=X12[v_indx])
elif nn_name == '48-net':
y_pred = nn.predict(X_test,X12=X12[v_indx],X24=X24[v_indx])
else:
y_pred = nn.predict(X_test)
score = score_fn(y_test,y_pred)
#print(iteration,'fold score',score)
scores.append(score)
iteration += 1
score_mean = sp.array(scores).mean()
print(d_num,'mean score',score)
return score_mean
示例2: ParseToDataContainers
def ParseToDataContainers(self,
Delimiter=None):
# Parse an input file into the DataContainers object
DCs = DataContainer.DataContainers()
if(re.search('.npy',self.GetName())):
Arrays = None
if(self.GetboCompressed()):
Arrays = scipy.load(self.GetDecomprName())
else:
Arrays = scipy.load(self.GetName())
Header = Arrays[:,0].tolist()
for i in xrange(len(Header)):
Name = Header[i] # The names of the datacontainers are determined by the
# header column names.
DCs.DataContainers[Name] = DataContainer.DataContainer()
DCs.Names2Columns[Name] = i
DCs.Columns2Names[i] = Name
DCs.DataContainers[Name].SetDataArray(Arrays[i,1:])
DCs.DataContainers[Name].SetDataName(Name)
del Arrays
else:
Line = self.GetFileHandle().readline()
if(self.GetboHeader()):
Line = re.sub('#','',Line)
Names = Line.strip().split(Delimiter) # The file should be space or tab delimited!
for i in range(len(Names)):
Name = Names[i] # The names of the datacontainers are determined by the
# header column names.
DCs.DataContainers[Name] = DataContainer.DataContainer()
DCs.Names2Columns[Name] = i
DCs.Columns2Names[i] = Name
DCs.DataContainers[Name].InitDataArray()
DCs.DataContainers[Name].SetDataName(Name)
else:
LSplit = Line.strip().split(Delimiter)
for i in range(len(LSplit)):
Name = str(i)
DCs.DataContainers[Name] = DataContainer.DataContainer()
DCs.Names2Columns[Name] = i
DCs.Columns2Names[i] = Name
DCs.DataContainers[Name].InitDataArray()
DCs.DataContainers[Name].SetDataName(Name)
Entry = LSplit[i]
DCs.DataContainers[Name].AppendToArray(Entry)
for Line in self.GetFileHandle():
LSplit = Line.strip().split(Delimiter)
for i in range(len(LSplit)):
Name = DCs.Columns2Names[i]
Entry = LSplit[i]
DCs.DataContainers[Name].AppendToArray(Entry)
for Key in DCs.DataContainers.iterkeys():
DCs.DataContainers[Key].CastDataArrayToScipy() # Make scipy.arrays of the lists.
return DCs
示例3: save_andor_load_arrays
def save_andor_load_arrays(endog, exog, true_params, save_arrays, load_old_arrays):
if save_arrays:
sp.save("endog.npy", endog)
sp.save("exog.npy", exog)
sp.save("true_params.npy", true_params)
if load_old_arrays:
endog = sp.load("endog.npy")
exog = sp.load("exog.npy")
true_params = sp.load("true_params.npy")
return endog, exog, true_params
示例4: save_andor_load_arrays
def save_andor_load_arrays(
endog, exog, true_params, save_arrays, load_old_arrays):
if save_arrays:
sp.save('endog.npy', endog)
sp.save('exog.npy', exog)
sp.save('true_params.npy', true_params)
if load_old_arrays:
endog = sp.load('endog.npy')
exog = sp.load('exog.npy')
true_params = sp.load('true_params.npy')
return endog, exog, true_params
示例5: execute
def execute(self, nprocesses=1):
params = self.params
boxshape = params['boxshape']
boxunit = params['boxunit']
resultf = params['hr'][0]
if len(params['last']) != 0:
resultf = resultf + params['last'][0]
resultf = resultf + '-' + params['hr'][1]
if len(params['last']) != 0:
resultf = resultf + params['last'][1]
FKPweight = params['FKPweight']
in_root = params['input_root']
out_root = params['output_root']
mid = params['mid']
fkpp = params['FKPpk']
WindowF_fname = out_root+'WindowF_'+\
str(boxshape[0])+'x'+str(boxshape[1])+'x'+\
str(boxshape[2])+'x'+str(boxunit)+'_'+resultf
kWindowF_fname = out_root+'k_WindowF_'+\
str(boxshape[0])+'x'+str(boxshape[1])+'x'+\
str(boxshape[2])+'x'+str(boxunit)+'_'+resultf
print WindowF_fname
try:
WindowF = sp.load(WindowF_fname+'.npy')
k = sp.load(kWindowF_fname+'.npy')
except IOError:
print '\tWindow Functin ReMake'
WindowF, k = self.GetWindowFunctionData()
non0 = WindowF.nonzero()
sp.save(WindowF_fname, WindowF)
sp.save(kWindowF_fname, k)
#txtf = open(out_root+'window_for_idl.txt', 'w')
#try:
# for i in range(len(WindowF)):
# if WindowF[i]==0: continue
# print >>txtf, '{0} {1}'.format(k[i], WindowF[i])
#finally:
# txtf.close()
return WindowF, k
示例6: loadTFIDF
def loadTFIDF(path):
weight=sp.load('tfidf_weight.npy')
fp=codecs.open('tfidf_words.txt','r','utf-8')
words=json.load(fp)
fp.close()
return words,weight
示例7: make_video
def make_video(image_dir, filename="vidout.avi", fixation_file=None):
MPEG_FOURCC = 827148624
vwriter = cv2.VideoWriter()
if fixation_file is not None:
fixations = sp.load(fixation_file)
fixations[sp.isnan(fixations)] = -100
fixations[abs(fixations) > 1000] = 1000
else:
fixations = []
im_base_name = "cam1_frame_"
im_extension = ".bmp"
suc = vwriter.open(os.path.join(image_dir, filename), cv.CV_FOURCC('M', 'J', 'P', 'G'), 30, (640,480))
if not suc:
raise IOError("Failed to open movie")
for frame_num in xrange(1000):
im_name = "".join([im_base_name, str(frame_num), im_extension])
im_path = os.path.join(image_dir, im_name)
im = cv2.imread(im_path)
if len(fixations) != 0:
cv2.circle(im, tuple(fixations[frame_num]), 3, (255, 255, 255))
vwriter.write(im)
示例8: from_file
def from_file(fname):
"""Load model from a npz file"""
params = dict(sc.load(fname).items())
model = Model(fname, **params)
if "seed" in params:
model.set_seed(model["seed"])
return model
示例9: test_brown_clustering
def test_brown_clustering():
fname = "test-data/text-1e2.npz"
F = sc.load( fname )
C, D = F['C'], F['D']
k = 100
W = 1000
bc = BrownClusteringAlgorithm( C )
bc.run( k, W )
示例10: train
def train(nn_name = '12-net',k = 12):
"""
Fucntion for traning 12-net with testing on part of data
using cross validation
"""
suff = str(k)
if nn_name.find('calib') > 0:
X_data_name = 'train_data_icalib_'+ suff + '.npy'
y_data_name = 'labels_icalib_'+ suff + '.npy'
else:
X_data_name = 'train_data_'+ suff + '.npy'
y_data_name = 'labels_'+ suff + '.npy'
rates12 = sp.hstack((0.05 * sp.ones(25,dtype=sp.float32),0.005*sp.ones(15,dtype=sp.float32),0.0005*sp.ones(10,dtype=sp.float32)))
rates24 = sp.hstack((0.01 * sp.ones(25,dtype=sp.float32),0.0001*sp.ones(15,dtype=sp.float32)))
rates48 = sp.hstack ([0.05 * sp.ones(15,dtype=sp.float32),0.005*sp.ones(10,dtype=sp.float32) ])
if nn_name == '24-net':
nn = Cnnl(nn_name = nn_name,l_rates=rates24,subnet=Cnnl(nn_name = '12-net',l_rates=rates12).load_model(
'12-net_lasagne_.pickle'))
elif nn_name == '48-net':
nn = Cnnl(nn_name = nn_name,l_rates=rates48,subnet=Cnnl(nn_name = '24-net',l_rates=rates24,subnet=Cnnl(nn_name = '12-net',l_rates=rates12).load_model(
'12-net_lasagne_.pickle')).load_model('24-net_lasagne_.pickle'))
else:
nn = Cnnl(nn_name = nn_name,l_rates=rates12)
if not os.path.exists(nn_name + '_lasagne_.pickle'):
if nn_name.find('calib') > 0:
ds.get_train_wider_calib_data(k=k)
else:
ds.get_train_data(k=k)
X,y = sp.load(X_data_name),sp.load(y_data_name)
X_train,y_train = X,y
if not os.path.exists(nn_name + '_lasagne_.pickle'):
if nn_name == '24-net':
X_sub_train12 = sp.load('train_data_12.npy')
nn.fit(X = X_train,y = y_train,X12 = X_sub_train12)
elif nn_name == '48-net':
X_sub_train12 = sp.load('train_data_12.npy')
X_sub_train24 = sp.load('train_data_24.npy')
nn.fit(X = X_train,y = y_train,X12 = X_sub_train12,X24 = X_sub_train24)
else:
nn.fit(X = X_train,y = y_train)
nn.save_model(nn_name + '_lasagne_.pickle')
示例11: draw_raw_signal_around_genes
def draw_raw_signal_around_genes(raw_signals, out_png, windowsize=20000):
"""draw the raw signals as computed by make_raw_signal_around_genes"""
gene_expr = filter(lambda f: 'gene_expr' in f, raw_signals)
reads = filter(lambda f: 'gene_expr' not in f and 'matched_size' not in f, raw_signals)
pyplot.figure()
f, plots = pyplot.subplots(1, len(reads)+1, sharex=False, sharey=True, squeeze=False)
#sig_min = reduce(min, map(min, map(sp.load, reads)))
#sig_max = reduce(max, map(max, map(sp.load, reads)))
for i, read_sig in enumerate(reads):
#plots[i+1].imshow(sp.load(read_sig), interpolation='nearest', vmin=sig_min, vmax=sig_max)
plots[0, i+1].imshow(sp.ma.filled(sp.load(read_sig), fill_value=0).T, interpolation='nearest', aspect=.05)
plots[0, i+1].text(0,0,read_sig.split('gene.expression.')[1].split('.')[0], rotation=30, verticalalignment='bottom')
gexpr_ma = sp.load(gene_expr[0]).astype(float)
plots[0, 0].imshow(sp.ma.filled(gexpr_ma.reshape(1,gexpr_ma.shape[0]), fill_value=0).T, interpolation='nearest', aspect=.002)
#yticks(sp.arange())
shape = sp.load(read_sig).shape
pyplot.xticks(sp.arange(0, shape[0] + shape[0]/4, shape[0] / 4), sp.arange(-windowsize/2, windowsize/2 + windowsize/4, windowsize/4))
f.savefig(out_png)
pyplot.close('all')
示例12: from_file
def from_file( fname ):
"""Load model from a HDF file"""
if not fname.endswith(".npz"):
fname += ".npz"
params = dict( sc.load( fname ).items() )
model = Model( fname, **params )
if "seed" in params:
model.set_seed( model.get_parameter("seed") )
return model
示例13: read_file
def read_file(name):
fname = fname_template %name
if os.path.exists(fname+'_x.npy') and os.path.exists(fname+'_y.npy'):
xs = scipy.load(fname+'_x.npy')
ys = scipy.load(fname+'_y.npy')
return xs, ys
elif os.path.exists(fname):
with open(fname) as fh:
lines = fh.readlines()
ns = len(lines)
x, y = numpy.ndarray(ns), numpy.ndarray(ns, dtype=complex)
for i, l in enumerate(lines):
xr, yr = l.split('\t')
x[i] = eval(xr)
y[i] = eval(yr)
return x, y
else:
print >>sys.stderr, 'Manca il file %s' %(fname_template %name,)
#sys.exit(1)
return None, None
示例14: loadMSER_npy
def loadMSER_npy(fn=nn_data_sets.NN_DATA_MSER,datadir=NN_DATA_DIR):
'''
As a shortcut to loading the MSER data set from the 1000's of files found in the
ukbench_extract folder, one should call loadMSER() once, and save the resulting
numpy array to a single file. This function assumes you have done so, and will
load the MSER data from the specified numpy file.
@Note: This function really doesn't do anything but put comments around the
use of numpy.load(...). Use numpy.save( filename, M) to create the saved file
in the first place.
'''
return scipy.load( os.path.join(datadir, fn) )
示例15: reconstruct_target
def reconstruct_target(target_file,base_prefix,regul = None):
"""
Reconstruct the target in 'target_file' using constrained,
and optionally regularized, least square optimisation.
arguments :
target_file : file contaiing the target to fit
base_prefix : prefix for the files of the base.
"""
vlist = read_vertex_list(base_prefix+'_vertices.dat')
t = read_target(target_file,vlist)
U = load(base_prefix+"_U.npy").astype('float')
S = load(base_prefix+"_S.npy").astype('float')
V = load(base_prefix+"_V.npy").astype('float')
ntargets,dim = V.shape
nvert = len(t)
pt = dot(U.T,t.reshape(nvert*3,1))
pbase = S[:dim].reshape(dim,1)*V.T
A = param('A',value = matrix(pbase))
b = param('b',value = matrix(pt))
x = optvar('x',ntargets)
if regul is None : prob = problem(minimize(norm2(A*x-b)),[x>=0.,x<=1.])
else : prob = problem(minimize(norm2(A*x-b) + regul * norm1(x)),[x>=0.,x<=1.])
prob.solve()
targ_names_file = base_prefix+"_names.txt"
with open(targ_names_file) as f :
tnames = [line.strip() for line in f.readlines() ]
tnames.sort()
base,ext = os.path.splitext(target_file)
bs_name = base+".bs"
with open(bs_name,"w") as f :
for tn,v in zip(tnames,x.value):
if v >= 1e-3 : f.write("%s %0.3f\n"%(tn,v))