本文整理汇总了Python中scipy.linspace函数的典型用法代码示例。如果您正苦于以下问题:Python linspace函数的具体用法?Python linspace怎么用?Python linspace使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了linspace函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_quasi_newton_broyden_bad
def test_quasi_newton_broyden_bad():
op = p.OptimizationProblem(c.chebyquad)
guess=linspace(0,1,4)
cn = p.QuasiNewtonBroydenBad(op)
assert near(sol4,(cn.optimize(guess)))
guess=linspace(0,1,8)
assert near(sol8,(cn.optimize(guess)))
示例2: extract_seg_plot
def extract_seg_plot(data, output_filename_base):
subclone_plot_file_name = output_filename_base + '.MixClone.segplot.png'
subclone_prev_lst = []
copynumber_lst = []
seg_num = data.seg_num
print "Extracting segments plot file..."
sys.stdout.flush()
for j in range(0, seg_num):
if data.segments[j].baseline_label == True or data.segments[j].allele_type == 'PM':
continue
subclone_prev_lst.append(data.segments[j].subclone_prev)
copynumber_lst.append(data.segments[j].copy_number)
X = len(subclone_prev_lst)
plt.figure(figsize=(8,8), dpi = 150)
plt.plot(range(1, X+1), subclone_prev_lst, 'o')
plt.xlim(0, X+1)
plt.ylim(0, 1)
plt.xlabel('Copy number')
plt.ylabel('Subclonal cellular prevalence')
plt.xticks(sp.linspace(1, X, X), copynumber_lst)
plt.yticks(sp.linspace(0, 1, 11), ['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%'])
plt.savefig(subclone_plot_file_name, bbox_inches='tight')
示例3: split
def split(self, sagi, meri):
""" utilizes geometry.grid to change the rectangle into a generalized surface,
it is specified with a single set of basis vectors to describe the meridonial,
normal, and sagittal planes."""
ins = float((sagi - 1))/sagi
inm = float((meri - 1))/meri
stemp = self.norm.s/sagi
mtemp = self.meri.s/meri
z,theta = scipy.meshgrid(scipy.linspace(-self.norm.s*ins,
self.norm.s*ins,
sagi),
scipy.linspace(-self.meri.s*inm,
self.meri.s*inm,
meri))
vecin =geometry.Vecr((self.sagi.s*scipy.ones(theta.shape),
theta+scipy.pi/2,
scipy.zeros(theta.shape))) #this produces an artificial
# meri vector, which is in the 'y_hat' direction in the space of the cylinder
# This is a definite patch over the larger problem, where norm is not normal
# to the cylinder surface, but is instead the axis of rotation. This was
# done to match the Vecr input, which works better with norm in the z direction
pt1 = geometry.Point(geometry.Vecr((scipy.zeros(theta.shape),
theta,
z)),
self)
pt1.redefine(self._origin)
vecin = vecin.split()
x_hat = self + pt1 #creates a vector which includes all the centers of the subsurface
out = []
#this for loop makes me cringe super hard
for i in xrange(meri):
try:
temp = []
for j in xrange(sagi):
inp = self.rot(vecin[i][j])
temp += [Cyl(geometry.Vecx(x_hat.x()[:,i,j]),
self._origin,
[2*stemp,2*mtemp],
self.sagi.s,
vec=[inp, self.norm.copy()],
flag=self.flag)]
out += [temp]
except IndexError:
inp = self.rot(vecin[i])
out += [Cyl(geometry.Vecx(x_hat.x()[:,i]),
self._origin,
[2*stemp,2*mtemp],
self.norm.s,
vec=[inp, self.norm.copy()],
flag=self.flag)]
return out
示例4: loadImageAsGreyScale
def loadImageAsGreyScale(self, subscriber=0):
im = Image.open(self.paramFilename.value)
if im.mode == "I;16":
im = im.convert("I")
data = scipy.misc.fromimage(im).astype("int16")
else:
data = scipy.misc.fromimage(im, flatten=True)
Ny, Nx = data.shape
xUnit = Quantity(self.paramXScale.value.encode("utf-8"))
xAxis = DataContainer.FieldContainer(
scipy.linspace(0.0, xUnit.value, Nx, True), xUnit / xUnit.value, longname="x-coordinate", shortname="x"
)
if self.paramYScale.value == "link2X":
yUnit = xUnit * float(Ny) / Nx
else:
yUnit = Quantity(self.paramYScale.value.encode("utf-8"))
yAxis = DataContainer.FieldContainer(
scipy.linspace(0.0, yUnit.value, Ny, True), yUnit / yUnit.value, longname="y-coordinate", shortname="y"
)
try:
FieldUnit = Quantity(self.paramFieldUnit.value.encode("utf-8"))
except AttributeError:
FieldUnit = self.paramFieldUnit.value
result = DataContainer.FieldContainer(
data, FieldUnit, longname="Image", shortname="I", dimensions=[yAxis, xAxis]
)
result.seal()
return result
示例5: uvToELz_grid
def uvToELz_grid(ulinspace,vlinspace,R=1.,t=-4.,pot='bar',beta=0.,
potparams=(0.9,0.01,25.*_degtorad,.8,None)):
"""
NAME:
uvToELz_grid
PURPOSE:
calculate uvToLz on a grid in (u,v)
INPUT:
ulinspace, vlinspace - build the grid using scipy's linspace with
these arguments
R - Galactocentric Radius
t - time to integrate backwards for
(interpretation depends on potential)
pot - type of non-axisymmetric, time-dependent potential
beta - power-law index of rotation curve
potparams - parameters for this potential
OUTPUT:
final (E,Lz) on grid [nus,nvs,2]
E=E/vo^2; Lz= Lz/Ro/vo
HISTORY:
2010-03-01 - Written - Bovy (NYU)
"""
us= sc.linspace(*ulinspace)
vs= sc.linspace(*vlinspace)
nus= len(us)
nvs= len(vs)
out= sc.zeros((nus,nvs,2))
for ii in range(nus):
for jj in range(nvs):
tmp_out= uvToELz(UV=(us[ii],vs[jj]),R=R,t=t,pot=pot,beta=beta,potparams=potparams)
out[ii,jj,0]= tmp_out[0]
out[ii,jj,1]= tmp_out[1]
return out
示例6: volweight
def volweight(numsplit=(3,3), factor=1, fact2=None, eq='/home/ian/python/g1120824019.01400'):
b = TRIPPy.Tokamak(eqtools.EqdskReader(gfile=eq))
rgrid = b.eq.getRGrid()
zgrid = b.eq.getZGrid()
rgrid = scipy.linspace(rgrid[0],rgrid[-1],len(rgrid)*factor)
zgrid = scipy.linspace(zgrid[0],zgrid[-1],len(zgrid)*factor)
twopi2 = twopi(b)
surfs = twopi2[0].split(numsplit[0],numsplit[1])
out = scipy.zeros((len(rgrid)-1,len(zgrid)-1))
for i in surfs:
for j in i:
surf2 = j
if fact2 is None:
surf2 = j
else:
surf2 = j.split(fact2,fact2)
beam = TRIPPy.beam.multiBeam(surf2,twopi2[1])
b.trace(beam)
#TRIPPy.plot.mayaplot.plotLine(beam)
out += TRIPPy.beam.volWeightBeam(beam,rgrid,zgrid)
return out
示例7: getImageDescriptor
def getImageDescriptor(model, im, conf):
im = standardizeImage(im)
height, width = im.shape[:2]
numWords = model.vocab.shape[1]
frames, descrs = getPhowFeatures(im, conf.phowOpts)
# quantize appearance
if model.quantizer == 'vq':
binsa, _ = vq(descrs.T, model.vocab.T)
elif model.quantizer == 'kdtree':
raise ValueError('quantizer kdtree not implemented')
else:
raise ValueError('quantizer {0} not known or understood'.format(model.quantizer))
hist = []
for n_spatial_bins_x, n_spatial_bins_y in zip(model.numSpatialX, model.numSpatialX):
binsx, distsx = vq(frames[0, :], linspace(0, width, n_spatial_bins_x))
binsy, distsy = vq(frames[1, :], linspace(0, height, n_spatial_bins_y))
# binsx and binsy list to what spatial bin each feature point belongs to
if (numpy.any(distsx < 0)) | (numpy.any(distsx > (width/n_spatial_bins_x+0.5))):
print ("something went wrong")
import pdb; pdb.set_trace()
if (numpy.any(distsy < 0)) | (numpy.any(distsy > (height/n_spatial_bins_y+0.5))):
print ("something went wrong")
import pdb; pdb.set_trace()
# combined quantization
number_of_bins = n_spatial_bins_x * n_spatial_bins_y * numWords
temp = arange(number_of_bins)
# update using this: http://stackoverflow.com/questions/15230179/how-to-get-the-linear-index-for-a-numpy-array-sub2ind
temp = temp.reshape([n_spatial_bins_x, n_spatial_bins_y, numWords])
bin_comb = temp[binsx, binsy, binsa]
hist_temp, _ = histogram(bin_comb, bins=range(number_of_bins+1), density=True)
hist.append(hist_temp)
hist = hstack(hist)
hist = array(hist, 'float32') / sum(hist)
return hist
示例8: test_interpolateArray
def test_interpolateArray():
grid_x = scipy.linspace(1, 5, 20)
grid_y = scipy.linspace(-1, 1, 10)
def fn(x):
return scipy.sin(x[0] + x[1])
((xlist, ylist), f) = applyGrid([grid_x, grid_y], fn)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xlist, ylist, f.ravel())
grid2_x = scipy.linspace(1, 5, 40)
grid2_y = scipy.linspace(-1, 1, 20)
f2 = interpolateArray([grid_x, grid_y], [grid2_x, grid2_y], f)
xy_list = itertools.product(grid2_x, grid2_y)
(xlist2, ylist2) = zip(*xy_list)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xlist2, ylist2, f2.ravel())
grid3_x = grid_x
grid3_y = grid_y
f3 = interpolateArray([grid2_x, grid2_y], [grid3_x, grid3_y], f2)
xy_list = itertools.product(grid3_x, grid3_y)
(xlist3, ylist3) = zip(*xy_list)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xlist3, ylist3, f3.ravel())
示例9: subdivide
def subdivide(g, rmin, rmax, m):
"""
Subdivide the given interval by equal integrals of g.
**example**
>>> g = lambda r : r**2
>>> rmin = 0.0
>>> rmax = 1.0
>>> m = 2
>>> r = subdivide(g, rmin, rmax, m)
>>> abs(r - array([0.0, .5**(1./3.), 1.0])).sum() <= 1e-4
True
"""
r = sp.linspace(rmin, rmax, m+1)
# total integral value
tot = quad(g, rmin, rmax)[0]
cuts = sp.linspace(0.0, tot, m+1)[1:-1]
# define intervals r_n to r_n+1 to give equal area under g(r)
r[1:-1] = [brentq((lambda r_: quad(g, rmin, r_)[0]-cut), rmin, rmax,
xtol=1.0e-4)
for cut in cuts]
# return the sequence of subinterval boundaries
return r
示例10: draw_plot
def draw_plot(self):
self.axes.clear()
self.histax.clear()
global mode
if mode == 'hsv':
self.axes.set_xlabel('Hue')
self.axes.set_ylabel('Saturation')
self.axes.set_zlabel('Value')
tubepixels = np.array(list(self.hsv[greenloc[0], greenloc[1]] for greenloc in coloredpixels(self.mask, (0,255,0))))
nontubepixels = np.array(list(self.hsv[redloc[0], redloc[1]] for redloc in coloredpixels(self.mask, (0,0,255))))
else:
self.axes.set_xlabel('Blue')
self.axes.set_ylabel('Green')
self.axes.set_zlabel('Red')
tubepixels = np.array(list(self.smallimg[greenloc[0], greenloc[1]] for greenloc in coloredpixels(self.mask, (0,255,0))))
nontubepixels = np.array(list(self.smallimg[redloc[0], redloc[1]] for redloc in coloredpixels(self.mask, (0,0,255))))
onehundredtube = [int(x) for x in scipy.linspace(0,len(tubepixels)-1, 500)]
onehundrednon = [int(x) for x in scipy.linspace(0,len(nontubepixels)-1, 500)]
if len(tubepixels):
self.axes.scatter(tubepixels[onehundredtube,0], tubepixels[onehundredtube,1], tubepixels[onehundredtube,2], c='g')
self.histax.hist(tubepixels[onehundredtube, 1], 100, normed=1, facecolor='green')
if len(nontubepixels):
self.axes.scatter(nontubepixels[onehundrednon,0], nontubepixels[onehundrednon,1], nontubepixels[onehundrednon,2], c='r')
self.histax.hist(nontubepixels[onehundrednon, 1], 100, normed=1, facecolor='red')
self.figure.canvas.draw()
self.histfig.canvas.draw()
示例11: testSnrFuncs
def testSnrFuncs(self):
"""test for signal to noise ratio functions"""
# trivial
data_triv = sp.ones((3, 10))
snr_triv_test = sp.ones(3)
assert_equal(
snr_peak(data_triv, 1.0),
snr_triv_test)
assert_equal(
snr_power(data_triv, 1.0),
snr_triv_test)
assert_equal(
snr_maha(data_triv, sp.eye(data_triv.shape[1])),
snr_triv_test)
# application
data = sp.array([
sp.sin(sp.linspace(0.0, 2 * sp.pi, 100)),
sp.sin(sp.linspace(0.0, 2 * sp.pi, 100)) * 2,
sp.sin(sp.linspace(0.0, 2 * sp.pi, 100)) * 5,
])
assert_equal(
snr_peak(data, 1.0),
sp.absolute(data).max(axis=1))
assert_equal(
snr_power(data, 1.0),
sp.sqrt((data * data).sum(axis=1) / data.shape[1]))
assert_almost_equal(
snr_maha(data, sp.eye(data.shape[1])),
sp.sqrt((data * data).sum(axis=1) / data.shape[1]))
示例12: test_newton_exact_line_search
def test_newton_exact_line_search():
op = p.OptimizationProblem(c.chebyquad)
guess=linspace(0,1,4)
cn = p.NewtonExactLine(op)
assert near(sol4,(cn.optimize(guess)))
guess=linspace(0,1,8)
assert near(sol8,(cn.optimize(guess)))
示例13: test_classic_newton
def test_classic_newton():
op = p.OptimizationProblem(c.chebyquad)
guess=linspace(0,1,4)
cn = p.ClassicNewton(op)
assert near(sol4,(cn.optimize(guess)))
guess=linspace(0,1,8)
assert near(sol8,(cn.optimize(guess)))
示例14: get_znodes
def get_znodes(self):
" Compute a nodes for a log-lower and linear-upper grid. "
zlower = sp.exp(sp.linspace(sp.log(self.zmin), sp.log(self.zmid), self.Nlo))
zupper = sp.linspace(self.zmid, self.zmax, self.Nhi)
znodes = sp.concatenate([zlower,
zupper[1:]])
return znodes
示例15: add_intron_patch2
def add_intron_patch2(ax, start, stop, cnt, color='green'):
### compute a quadratic function through the three points
### we set the first root to 0 and shift only the plotting ...
x2 = ((stop - start) / 2.0)
x3 = float(stop - start)
### compute coefficients
#z = float((x1*x1*x2 + x1*x3*x3 + x2*x2*x3) - (x3*x3*x2 + x2*x2*x1 + x1*x1*x3))
z = float((x2*x2*x3) - (x3*x3*x2))
if z == 0:
return
#a = float(cnt) * (x3 - x1) / z
#b = float(cnt) * ((x1*x1) - (x3*x3)) / z
#c = float(cnt) * ((x1*x3*x3) - (x1*x1*x3)) / z
a = float(cnt) * x3 / z
b = float(cnt) * (-1*(x3*x3)) / z
### get points
#x = sp.linspace(start, stop, 100)
x = sp.linspace(0, stop-start, 100)
#y = (a*x*x) + (b*x) + c
y = (a*x*x) + (b*x)
ax.plot(sp.linspace(start, stop, 100), y, '-', color=color)