当前位置: 首页>>代码示例>>Python>>正文


Python scipy.lena函数代码示例

本文整理汇总了Python中scipy.lena函数的典型用法代码示例。如果您正苦于以下问题:Python lena函数的具体用法?Python lena怎么用?Python lena使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了lena函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_connect_regions

def test_connect_regions():
    lena = sp.lena()
    for thr in (50, 150):
        mask = lena > thr
        graph = img_to_graph(lena, mask)
        nose.tools.assert_equal(ndimage.label(mask)[1],
                                cs_graph_components(graph)[0])
开发者ID:poolio,项目名称:scikit-learn,代码行数:7,代码来源:test_image.py

示例2: __init__

    def __init__(self):
        QMainWindow.__init__(self, None,
                             "FFTLab Main Window",
                             Qt.WType_TopLevel | Qt.WDestructiveClose)

        self.file_menu = QPopupMenu(self)
        self.file_menu.insertItem('&Quit', self.file_quit, Qt.CTRL + Qt.Key_Q)
        self.menuBar().insertItem('&File', self.file_menu)

        self.help_menu = QPopupMenu(self)
        self.menuBar().insertSeparator()
        self.menuBar().insertItem('&Help', self.help_menu)

        self.help_menu.insertItem('&About', self.about)

        self.main_widget = QWidget(self, "Main widget")

        data = ((lena()/255.)).astype("complex64")
        kernel = np.ones((6,6)).astype("complex64")
        #data = np.random.uniform(0,1,(8,8)).astype("complex64")
        #kernel = np.random.uniform(0,1,(7,7)).astype("complex64")
        #power_spec = fftshift(log(abs(signal.fftn(data))))

        gpu_conv = fftconvolve2d(data,kernel)
        cpu_conv = fftconvolve(data.real, kernel.real, mode="valid")

        info("GPU shape = (%s, %s)" % gpu_conv.shape)
        info("CPU shape = (%s, %s)" % cpu_conv.shape)
        
        check_results(cpu_conv, gpu_conv)

        data_c = ImageCanvas(data.real, self.main_widget)
        kernel_c = ImageCanvas(kernel.real, self.main_widget)
        gpu_conv_c = ImageCanvas(gpu_conv, self.main_widget)
        cpu_conv_c = ImageCanvas(cpu_conv, self.main_widget)
        #power_spec = ImageCanvas(power_spec,self.main_widget)

        data_label = QLabel("Input Data (lena)", self.main_widget)
        data_label.setAlignment(QLabel.AlignCenter)
        kernel_label = QLabel("Convolution Kernel", self.main_widget)
        kernel_label.setAlignment(QLabel.AlignCenter)
        gpu_conv_label = QLabel("GPU fftconvolve (CUDA)", self.main_widget)
        gpu_conv_label.setAlignment(QLabel.AlignCenter)
        cpu_conv_label = QLabel("CPU fftconvolve (NumPy)", self.main_widget)
        cpu_conv_label.setAlignment(QLabel.AlignCenter)

        g = QGridLayout(self.main_widget)
        g.addWidget(data_label,0,0)
        g.addWidget(kernel_label,0,1)
        g.addWidget(data_c,1,0)
        g.addWidget(kernel_c,1,1)
        g.addWidget(gpu_conv_label,2,0)
        g.addWidget(cpu_conv_label,2,1)
        g.addWidget(gpu_conv_c,3,0)
        g.addWidget(cpu_conv_c,3,1)

        self.main_widget.setFocus()
        self.setCentralWidget(self.main_widget)

        self.statusBar().message("%s - v%s" % (PROGNAME, PROG_VERSION) , 2000)
开发者ID:npinto,项目名称:python-cuda,代码行数:60,代码来源:fftlab.py

示例3: test_connect_regions_with_grid

def test_connect_regions_with_grid():
    lena = sp.lena()
    mask = lena > 50
    graph = grid_to_graph(*lena.shape, **{"mask": mask})
    assert_equal(ndimage.label(mask)[1], cs_graph_components(graph)[0])

    mask = lena > 150
    graph = grid_to_graph(*lena.shape, **{"mask": mask, "dtype": None})
    assert_equal(ndimage.label(mask)[1], cs_graph_components(graph)[0])
开发者ID:vincentschut,项目名称:scikit-learn,代码行数:9,代码来源:test_image.py

示例4: __init__

 def __init__(self):
     iris         = datasets.load_iris()
     self._x_iris = iris.data
     self._y_iris = iris.target
     try:
        self._lena = sp.lena()
     except AttributeError:
        from scipy import misc
        self._lena = misc.lena()
开发者ID:haisland0909,项目名称:python_practice,代码行数:9,代码来源:unsupervisedlearningsample.py

示例5: test_connect_regions_with_grid

def test_connect_regions_with_grid():
    lena = sp.lena()
    mask = lena > 50
    graph = grid_to_graph(*lena.shape, **{'mask' : mask})
    nose.tools.assert_equal(ndimage.label(mask)[1],
                            cs_graph_components(graph)[0])

    mask = lena > 150
    graph = grid_to_graph(*lena.shape, **{'mask' : mask, 'dtype' : None})
    nose.tools.assert_equal(ndimage.label(mask)[1],
                            cs_graph_components(graph)[0])
开发者ID:poolio,项目名称:scikit-learn,代码行数:11,代码来源:test_image.py

示例6: test_tvdenoise

def test_tvdenoise():
    lena = scipy.lena().astype(np.float)
    noisy_lena = lena + 0.2 * lena.std()*np.random.randn(*lena.shape)
    denoised_lena_W5 = tvdenoise(lena, niter=10, W=5.0)
    denoised_lena_W50 = tvdenoise(lena, niter=10, W=50.)
    grad_mag_lena = gradient_magnitude(lena).sum()
    grad_mag_noisy = gradient_magnitude(noisy_lena).sum()
    grad_mag_denoised_W5 = gradient_magnitude(denoised_lena_W5).sum()
    grad_mag_denoised_W50 = gradient_magnitude(denoised_lena_W50).sum()
    assert grad_mag_noisy > max(grad_mag_denoised_W5, grad_mag_denoised_W50)
    assert grad_mag_denoised_W5 > grad_mag_denoised_W50
    assert grad_mag_denoised_W5 > 0.5 * grad_mag_lena 
开发者ID:maelp,项目名称:scikits.image,代码行数:12,代码来源:test_tvdenoise.py

示例7: main

def main():
    x=lena()
    
    a=int(32)
    
    y=wv.misc.per_ext2d(x,a)
    z=wv.misc.symm_ext2d(x,a)
    
    plt.subplot(2,1,1)
    plt.imshow(y,cmap=cm.gray)
    plt.xlabel('Periodic Ext')
    
    plt.subplot(2,1,2)
    plt.imshow(z,cmap=cm.gray)
    plt.xlabel('Symmetric Ext')
    
    plt.show()
开发者ID:iklaush,项目名称:wavepy,代码行数:17,代码来源:exttest2.py

示例8: unsupervisedLearningTest02

def unsupervisedLearningTest02():
	from sklearn import cluster
	import scipy as sp
	import numpy as np
	try:
		lena = sp.lena()
	except AttributeError:
		from scipy import misc
		lena = misc.lena()

	X = lena.reshape((-1, 1))
	k_means = cluster.KMeans(n_clusters = 5, n_init = 1)
	k_means.fit(X)
	values = k_means.cluster_centers_.squeeze()
	labels = k_means.labels_
	lena_compressed = np.choose(labels, values)
	lena_compressed.shape = lena.shape

	print lena_compressed
开发者ID:hyliu0302,项目名称:scikit-learn-notes,代码行数:19,代码来源:myScikitLearnFcns.py

示例9: test_tv_denoise_2d

 def test_tv_denoise_2d(self):
     """
     Apply the TV denoising algorithm on the lena image provided
     by scipy
     """
     import scipy
     # lena image
     lena = scipy.lena().astype(np.float)
     # add noise to lena
     lena += 0.5 * lena.std()*np.random.randn(*lena.shape)
     # denoise
     denoised_lena = F.tv_denoise(lena, weight=60.0)
     # which dtype?
     assert denoised_lena.dtype in [np.float, np.float32, np.float64]
     from scipy import ndimage
     grad = ndimage.morphological_gradient(lena, size=((3,3)))
     grad_denoised = ndimage.morphological_gradient(denoised_lena, size=((3,3)))
     # test if the total variation has decreased
     assert np.sqrt((grad_denoised**2).sum()) < np.sqrt((grad**2).sum()) / 2
     denoised_lena_int = F.tv_denoise(lena.astype(np.int32), \
             weight=60.0, keep_type=True)
     assert denoised_lena_int.dtype is np.dtype('int32')
开发者ID:GaelVaroquaux,项目名称:scikits.image,代码行数:22,代码来源:test_tv_denoise.py

示例10: range

import numpy as np
import scipy
import matplotlib.pyplot as plt

lena = scipy.lena()
lena[10:13, 20:23]
lena[100:120] = 255

lx, ly = lena.shape
X, Y = np.ogrid[0:lx, 0:ly]
mask = (X - lx/2)**2 + (Y - ly/2)**2 > lx*ly/4
lena[mask] = 0
lena[range(400), range(400)] = 255

plt.figure(figsize=(3,3))
plt.axes([0, 0, 1, 1])
plt.imshow(lena, cmap=plt.cm.gray)
plt.axis('off')

plt.show()
开发者ID:VirgileFritsch,项目名称:scipy-lecture-notes,代码行数:20,代码来源:plot_numpy_array.py

示例11: assert

                  #type_converters = converters.blitz
                 )
           
      assert(not context.has_key("__inlineargs__"))
      context["__inlineargs__"]=args
      context["__inlinekwargs__"]=kwargs
      r= eval("inline(*__inlineargs__,**__inlinekwargs__)",globals(),context)
      context["__inlineargs__"]=None
      return r
    return fct
    

if __name__=="__main__":
  import time
  st=time.clock()
  lena=scipy.lena().reshape(512,512,1).repeat(3,axis=2).astype(numpy.uint8).swapaxes(0,1).copy('F')
  cimg_code("do_test( a_array );",
"""
#include <CImg.h>
using namespace cimg_library;

int do_test(PyArrayObject * npimg ) {
   assert(npimg->nd==3);
   printf("%p %d x %d x %d\\n",npimg->data,npimg->dimensions[1],npimg->dimensions[0],npimg->dimensions[2]);
    CImg<unsigned char> image(npimg->data,npimg->dimensions[1],npimg->dimensions[0],1,npimg->dimensions[2]), visu(500,400,1,3,0);
    image=image.blur(2.5);
    return 0;
}
""",True)(a=lena)
  print "done in ",time.clock()-st, "seconds";
开发者ID:matthiascy,项目名称:pycvf,代码行数:30,代码来源:cimg.py

示例12:

import numpy as np
import scipy as sp

import harris

im = sp.lena()
harrisim = harris.compute_harris_response(im)
filtered_coords = harris.get_harris_points(harrisim, 6)
harris.plot_harris_points(im, filtered_coords)

开发者ID:NelleV,项目名称:ROVAR,代码行数:9,代码来源:test_lena.py

示例13: lena

                   0 0 x x x 0 0
                   0 0 0 x 0 0 0 
                   0 0 0 0 0 0 0
    
    Once you have a numpy expression that works correctly, time it
    using time.time (or time.clock on windows).
    
    Use scipy.weave.blitz to run the same expression.  Again time it.
    
    Compare the speeds of the two function and calculate the speed-up 
    (numpy_time/weave_time).
    
    Plot two images that result from the two approaches and compare them.
"""

import time
from numpy import empty, float64
from scipy import lena
from scipy import weave
from matplotlib.pylab import subplot, imshow, title, show, gray, figure

img = lena()

expr = """avg_img =(  img[1:-1 ,1:-1]  # center
                    + img[ :-2 ,1:-1]  # left
                    + img[2:   ,1:-1]  # right
                    + img[1:-1 , :-2]  # top
                    + img[1:-1 ,2:  ]  # bottom
                    ) / 5.0"""

开发者ID:DivyaShanmugam,项目名称:pydanny-event-notes,代码行数:29,代码来源:blitz_inline_compare.py

示例14: test_write_frame_image

def test_write_frame_image():
    img = Image.fromarray(lena()).convert("RGB")
    b = TheoraEncoder(VIDEO_DIR+"/b.ogv", img.size[0], img.size[1])
    b.write_frame_image(img)
开发者ID:certik,项目名称:python-theora,代码行数:4,代码来源:test_encoder.py

示例15:

import scipy as sp
import numpy as np
import pylab as pl

l = sp.lena()
l_ = l[235:235+153, 205:162+205]

t = pl.imread('tarek.jpg')
t = t[::-1, ...]
t_ = t.sum(axis=-1)

################################################################################
pl.figure(0, figsize=(12, 4.5))
pl.gray()
pl.clf()
pl.axes([0, 0, 0.3, 1])
pl.imshow(t_.copy())
pl.axis('off')
pl.axes([0.33, 0, 0.3, 1])
pl.imshow(l_.copy())
pl.axis('off')

t_ = t_.astype(np.float)
t_ /= t_.max()

l_ = l_.astype(np.float)
l_ /= l_.max()

pl.axes([0.66, 0, 0.3, 1])
pl.imshow(t_ + l_)
pl.axis('off')
开发者ID:GaelVaroquaux,项目名称:scipy-tutorials,代码行数:31,代码来源:interlude.py


注:本文中的scipy.lena函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。