当前位置: 首页>>代码示例>>Python>>正文


Python scipy.isscalar函数代码示例

本文整理汇总了Python中scipy.isscalar函数的典型用法代码示例。如果您正苦于以下问题:Python isscalar函数的具体用法?Python isscalar怎么用?Python isscalar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了isscalar函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _oneEvaluation

 def _oneEvaluation(self, evaluable):
     """ This method should be called by all optimizers for producing an evaluation. """
     if self._wasUnwrapped:
         self.wrappingEvaluable._setParameters(evaluable)
         res = self.__evaluator(self.wrappingEvaluable)
     elif self._wasWrapped:            
         res = self.__evaluator(evaluable.params)
     else:            
         res = self.__evaluator(evaluable)
         ''' added by JPQ '''
         if self.constrained :
             self.feasible = self.__evaluator.outfeasible
             self.violation = self.__evaluator.outviolation
         # ---
     if isscalar(res):
         # detect numerical instability
         if isnan(res) or isinf(res):
             raise DivergenceError
         # always keep track of the best
         if (self.numEvaluations == 0
             or self.bestEvaluation is None
             or (self.minimize and res <= self.bestEvaluation)
             or (not self.minimize and res >= self.bestEvaluation)):
             self.bestEvaluation = res
             self.bestEvaluable = evaluable.copy()
     
     self.numEvaluations += 1
     
     # if desired, also keep track of all evaluables and/or their fitness.                        
     if self.storeAllEvaluated:
         if self._wasUnwrapped:            
             self._allEvaluated.append(self.wrappingEvaluable.copy())
         elif self._wasWrapped:            
             self._allEvaluated.append(evaluable.params.copy())
         else:            
             self._allEvaluated.append(evaluable.copy())        
     if self.storeAllEvaluations:
         if self._wasOpposed and isscalar(res):
             ''' added by JPQ '''
             if self.constrained :
                 self._allEvaluations.append([-res,self.feasible,self.violation])
             # ---
             else:
                 self._allEvaluations.append(-res)
         else:
             ''' added by JPQ '''
             if self.constrained :
                 self._allEvaluations.append([res,self.feasible,self.violation])
             # ---
             else:
                 self._allEvaluations.append(res)
     ''' added by JPQ '''
     if self.constrained :
         return [res,self.feasible,self.violation]
     else:
     # ---
         return res
开发者ID:PatrickHunter,项目名称:pybrain,代码行数:57,代码来源:optimizer.py

示例2: angcomp

def angcomp(ra1,dec1,ra2,dec2,method=3):
    """
    Return the delta_RA and delta_dec (delta = 1-2) components of the angular
    distance between objects.  This is simply an alternate output of the
    angular_distance function above. Distance is returned as degrees, and method chooses a more or less accurate way of determining the distance (with 1 being the fastest/least accurate).
    from astorlib.py

    # UNITS: degrees (output), degrees (input)
    """
    DEGRAD = pi/180.
    import scipy
    if scipy.isscalar(ra1) and scipy.isscalar(ra2):
	from numpy import cos,sin,sqrt
	if ra1-ra2>180:
		ra1 -= 360.
	elif ra2-ra1>180:
		ra2 -= 360.
    else:
	from scipy import cos,sin,sqrt
	if scipy.isscalar(ra1):
		t = ra2.copy()
		ra2 = ra2*0. + ra1
		ra1 = t.copy()
		t = dec2.copy()
		dec2 = dec2*0. + dec1
		dec1 = t.copy()
		del t

	ra1 = scipy.where(ra1-ra2>180,ra1-360.,ra1)
	ra2 = scipy.where(ra2-ra1>180,ra2-360.,ra2)

    ra1 = ra1*DEGRAD
    dec1 = dec1*DEGRAD
    ra2 = ra2*DEGRAD
    dec2 = dec2*DEGRAD

    if method==1:
	deltadec = dec1-dec2
	deltara = (ra1-ra2)*cos(dec2)
    else:
	div = 1.
	if method==3:
		div = sin(dec2)*sin(dec1)+cos(dec2)*cos(dec1)*cos((ra1-ra2))
	deltara = cos(dec2)*sin(ra1-ra2)/div
	deltadec = -(sin(dec2)*cos(dec1)-cos(dec2)*sin(dec1)*cos(ra1-ra2)/div)
	#if sum(div == 0) != 0: #attempt at making array compatable but doesn't
	#work for single integers. Note that could just remove this section of
	#the code since it only here for QA
	if div == 0:
	    import sys
	    print 'tools: div = 0, exiting'
	    sys.exit()

    return deltara/DEGRAD, deltadec/DEGRAD
开发者ID:jmcelve2,项目名称:MCCutils,代码行数:54,代码来源:tools.py

示例3: angcomp

def angcomp(ra1,dec1,ra2,dec2,method=3):
    """
    Return the delta_RA and delta_dec (delta = 1-2) components of the angular
    distance between objects.  This is simply an alternate output of the
    angular_distance function above. Distance is returned as degrees, and method chooses a more or less accurate way of determining the distance (with 1 being the fastest/least accurate).
    from astorlib.py
    """
    DEGRAD = pi/180.
    import scipy
    if scipy.isscalar(ra1) and scipy.isscalar(ra2):
	from math import cos,sin,sqrt
	if ra1-ra2>180:
		ra1 -= 360.
	elif ra2-ra1>180:
		ra2 -= 360.
    else:
	from scipy import cos,sin,sqrt
	if scipy.isscalar(ra1):
		t = ra2.copy()
		ra2 = ra2*0. + ra1
		ra1 = t.copy()
		t = dec2.copy()
		dec2 = dec2*0. + dec1
		dec1 = t.copy()
		del t

	ra1 = scipy.where(ra1-ra2>180,ra1-360.,ra1)
	ra2 = scipy.where(ra2-ra1>180,ra2-360.,ra2)

    ra1 = ra1*DEGRAD
    dec1 = dec1*DEGRAD
    ra2 = ra2*DEGRAD
    dec2 = dec2*DEGRAD

    if method==1:
	deltadec = dec1-dec2
	deltara = (ra1-ra2)*cos(dec2)
    else:
	div = 1.
	if method==3:
		div = sin(dec2)*sin(dec1)+cos(dec2)*cos(dec1)*cos((ra1-ra2))
	deltara = cos(dec2)*sin(ra1-ra2)/div
	deltadec = -(sin(dec2)*cos(dec1)-cos(dec2)*sin(dec1)*cos(ra1-ra2)/div)

    if isinstance(div, float) and div == 0:
        raise ValueError("dividing by div = 0")
    elif isinstance(div, numpy.ndarray) and div.any() == 0:
        raise ValueError("dividing by div = 0")


    return deltara/DEGRAD, deltadec/DEGRAD
开发者ID:karenyyng,项目名称:ElGordo_paper1,代码行数:51,代码来源:tools.py

示例4: generate_tolerances

def generate_tolerances(net, rtol, atol=None):
    if rtol == None:
        rtol = global_rtol
    if scipy.isscalar(rtol):
        rtol = scipy.ones(len(net.dynamicVars)) * rtol

    # We set atol to be a minimum of global_atol to avoid variables with large
    # typical values going negative.
    if (scipy.isscalar(atol) or atol==None):
        typ_vals = [abs(net.get_var_typical_val(id))
                    for id in net.dynamicVars.keys()]
        atol = rtol * scipy.asarray(typ_vals)
        if global_atol:
            atol = scipy.minimum(atol, global_atol)
    return rtol, atol
开发者ID:Colbert-Sesanker,项目名称:Networks,代码行数:15,代码来源:Dynamics.py

示例5: oscillate_hessian

    def oscillate_hessian(self, params, eps=1e-5,
                          relativeScale=True, stepSizeCutoff=1e-6,
                          verbose=False, f0_zero=False):
        """
        Same as hessian except uses oscillate cost function

        """

	nOv = len(params)
        if scipy.isscalar(eps):
            eps = scipy.ones(len(params), scipy.float_) * eps
	    
        ## compute cost at f(x), set f0 to zero if f0_zero is true
        if f0_zero:
            f0 = 0
        else:
            f0 = self.oscillate_cost(params)

	hess = scipy.zeros((nOv, nOv), scipy.float_)

	    ## compute all (numParams*(numParams + 1))/2 unique hessian elements
        for i in range(nOv):
            for j in range(i, nOv):
                hess[i][j] = self.hessian_elem(self.oscillate_cost, f0,
                                               params, i, j, eps[i], eps[j], 
                                               relativeScale, stepSizeCutoff,
                                               verbose)
                hess[j][i] = hess[i][j]

        return hess
开发者ID:Colbert-Sesanker,项目名称:Networks,代码行数:30,代码来源:Model_mod.py

示例6: periodic_hessian_log_params

    def periodic_hessian_log_params(self, params, eps=1e-5,
                           relativeScale=False, stepSizeCutoff=1e-6,
                           verbose=False):
        """
        Same as hessian_log_params except uses periodic cost function
        Relative scale is false by default here
        """
	nOv = len(params)
        if scipy.isscalar(eps):
            eps = scipy.ones(len(params), scipy.float_) * eps

	## compute cost at f(x)
	f0 = self.periodic_cost_log_params(scipy.log(params))

	hess = scipy.zeros((nOv, nOv), scipy.float_)

	## compute all (numParams*(numParams + 1))/2 unique hessian elements
        for i in range(nOv):
            for j in range(i, nOv):
                hess[i][j] = self.hessian_elem(self.periodic_cost_log_params, f0,
                                               scipy.log(params), 
                                               i, j, eps[i], eps[j], 
                                               relativeScale, stepSizeCutoff,
                                               verbose)
                hess[j][i] = hess[i][j]

        return hess
开发者ID:Colbert-Sesanker,项目名称:Networks,代码行数:27,代码来源:Model_mod.py

示例7: hessian_log_params

    def hessian_log_params(self, params, eps,
                           relativeScale=False, stepSizeCutoff=1e-6,
                           verbose=False):
        """
        Returns the hessian of the model in log parameters.

        eps: Sets the stepsize to try
        relativeScale: If True, step i is of size p[i] * eps, otherwise it is
                       eps
        stepSizeCutoff: The minimum stepsize to take
        vebose: If True, a message will be printed with each hessian element
                calculated
        """
	nOv = len(params)
        if scipy.isscalar(eps):
            eps = scipy.ones(len(params), scipy.float_) * eps

	## compute cost at f(x)
	f0 = self.cost_log_params(scipy.log(params))

	hess = scipy.zeros((nOv, nOv), scipy.float_)

	## compute all (numParams*(numParams + 1))/2 unique hessian elements
        for i in range(nOv):
            for j in range(i, nOv):
                hess[i][j] = self.hessian_elem(self.cost_log_params, f0,
                                               scipy.log(params), 
                                               i, j, eps[i], eps[j], 
                                               relativeScale, stepSizeCutoff,
                                               verbose)
                hess[j][i] = hess[i][j]

        return hess
开发者ID:Colbert-Sesanker,项目名称:Networks,代码行数:33,代码来源:Model_mod.py

示例8: __init__

 def __init__(self,net,prior=S.array([100,1])):
     if SP.isscalar(prior):
         self.fixE1=prior
         CNodeEps.__init__(self,net)
     else:
         self.fixE1 = None
         CNodeEps.__init__(self,net,prior)
开发者ID:PMBio,项目名称:sparseFA,代码行数:7,代码来源:sparseFA.py

示例9: errorScalingFactor

def errorScalingFactor(observable, beta):
  """
  Look up the numerical factors to apply to the sky averaged parallax error in order to obtain error
  values for a given astrometric parameter, taking the Ecliptic latitude and the number of transits into
  account.

  Parameters
  ----------

  observable - Name of astrometric observable (one of: alphaStar, delta, parallax, muAlphaStar, muDelta)
  beta       - Values(s) of the Ecliptic latitude.

  Returns
  -------

  Numerical factors to apply to the errors of the given observable.
  """
  if isscalar(beta):
    index=int(floor(abs(sin(beta))*_numStepsSinBeta))
    if index == _numStepsSinBeta:
      return _astrometricErrorFactors[observable][_numStepsSinBeta-1]
    else:
      return _astrometricErrorFactors[observable][index]
  else:
    indices = array(floor(abs(sin(beta))*_numStepsSinBeta), dtype=int)
    indices[(indices==_numStepsSinBeta)] = _numStepsSinBeta-1
    return _astrometricErrorFactors[observable][indices]
开发者ID:agabrown,项目名称:PyGaia,代码行数:27,代码来源:astrometric.py

示例10: _compute_qth_percentile

def _compute_qth_percentile(sorted, q, axis, out):
    if not isscalar(q):
        p = [_compute_qth_percentile(sorted, qi, axis, None)
             for qi in q]

        if out is not None:
            out.flat = p

        return p

    q = q / 100.0
    if (q < 0) or (q > 1):
        raise ValueError("percentile must be either in the range [0,100]")

    indexer = [slice(None)] * sorted.ndim
    Nx = sorted.shape[axis]
    index = q * (Nx - 1)
    i = int(index)
    if i == index:
        indexer[axis] = slice(i, i + 1)
        weights = array(1)
        sumval = 1.0
    else:
        indexer[axis] = slice(i, i + 2)
        j = i + 1
        weights = array([(j - index), (index - i)], float)
        wshape = [1] * sorted.ndim
        wshape[axis] = 2
        weights.shape = wshape
        sumval = weights.sum()

    # Use add.reduce in both cases to coerce data type as well as
    # check and use out array.
    return add.reduce(sorted[indexer] * weights, axis=axis, out=out) / sumval
开发者ID:Andres-Hernandez,项目名称:py-optim,代码行数:34,代码来源:percentile.py

示例11: get_data

    def get_data(self, pos, phase=None):
        """return voltage data for relative position and phase
        
        The relative position vector is matched with neuron_data.horizon and
        
        :Parameters:
            pos : ndarray
                The relative position in the dataset.
            phase : sequence
                The phase within the waveform to retrieve. Either a single
                sample index or a sequence. If None is given, return the
                complete waveform.
                Default=None
        """

        # checking pos
        if vector_norm(pos) > self.horizon:
            raise BeyondHorizonError('norm of relative position [%s] '
                                     'lies beyond the horizon [%s]!'
                                     % (vector_norm(pos), self.horizon))

        # check for phase
        if phase is None:
            phase = xrange(self.intra_v.size)
        if N.isscalar(phase):
            phase = xrange(phase, phase + 1)

        # call get_data implementation
        return self._get_data(pos, phase)
开发者ID:mtambos,项目名称:Neural-Simulation,代码行数:29,代码来源:neuron_data.py

示例12: callback

 def callback(x):
     if sp.isscalar(x):
         residuals.append(x)
     else:
         residuals.append(residual_norm(A, x, b))
     if cb is not None:
         cb(x)
开发者ID:pyamg,项目名称:pyamg,代码行数:7,代码来源:multilevel.py

示例13: _bestFound

 def _bestFound(self):
     """ return the best found evaluable and its associated fitness. """
     bestE = self.bestEvaluable.params.copy() if self._wasWrapped else self.bestEvaluable
     if self._wasOpposed and isscalar(self.bestEvaluation):
         bestF = -self.bestEvaluation
     else:
         bestF = self.bestEvaluation
     return bestE, bestF
开发者ID:PatrickHunter,项目名称:pybrain,代码行数:8,代码来源:optimizer.py

示例14: __init__

 def __init__(self, C, taud, tauf, U):
     if isinstance(C, DelayConnection):
         raise AttributeError, "STP does not handle heterogeneous connections yet."
     NetworkOperation.__init__(self, lambda:None, clock=C.source.clock)
     N = len(C.source)
     P = STPGroup(N, clock=C.source.clock)
     P.x = 1
     P.u = U
     P.ux = U
     if (isscalar(taud) & isscalar(tauf) & isscalar(U)):
         updater = STPUpdater(C.source, P, taud, tauf, U, delay=C.delay * C.source.clock.dt)
     else:
         updater = STPUpdater2(C.source, P, taud, tauf, U, delay=C.delay * C.source.clock.dt)
     self.contained_objects = [updater]
     C.source = P
     C.delay = 0
     C._nstate_mod = 0 # modulation of synaptic weights
     self.vars = P
开发者ID:sivaven,项目名称:brian,代码行数:18,代码来源:stp.py

示例15: jacobian

 def jacobian(self, reference_point):
     jac = self._element.function_gradient(self._mesh_entity.vertex_coords(),
                                           reference_point)
     if sp.isscalar(jac):
         return sp.array([[jac]])
     elif sp.all(sp.array(jac.shape) == 1):
         return jac.reshape((1, 1))
     else:
         return jac
开发者ID:hyharry,项目名称:PPFem,代码行数:9,代码来源:mapping.py


注:本文中的scipy.isscalar函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。