当前位置: 首页>>代码示例>>Python>>正文


Python scipy.isinf函数代码示例

本文整理汇总了Python中scipy.isinf函数的典型用法代码示例。如果您正苦于以下问题:Python isinf函数的具体用法?Python isinf怎么用?Python isinf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了isinf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: LDA_batch_normalization

def LDA_batch_normalization(dataset, sample_table, batch_col, output_folder, ncomps): # this is actually the batch normalization method
   
    tmp_output_folder = os.path.join(output_folder, 'tmp')

    if not os.path.isdir(tmp_output_folder):
        os.makedirs(tmp_output_folder)
    
    barcodes, filtered_conditions, filtered_matrix, conditions, matrix = dataset
    
    # Remove any remaining NaNs and Infs from the filtered matrix - they would screw
    # up the LDA. 
    filtered_matrix[scipy.isnan(filtered_matrix)] = 0
    filtered_matrix[scipy.isinf(filtered_matrix)] = 0

    # For full matrix, also eliminate NaNs and Infs, BUT preserve the indices and values
    # so they can be added back into the matrix later (not implemented yet, and may never
    # be - there should no longer be NaNs and Infs in the dataset)
    # The NaNs and Infs will mess up the final step of the MATLAB LDA script, which uses
    # matrix multiplication to remove the specified number of components!
    matrix_nan_inds = scipy.isnan(matrix)
    matrix_nan_vals = matrix[matrix_nan_inds]
    matrix_inf_inds = scipy.isinf(matrix)
    matrix_inf_vals = matrix[matrix_inf_inds]

    matrix[matrix_nan_inds] = 0
    matrix[matrix_inf_inds] = 0

    # Save both the small matrix (for determining the components to remove) and the 
    # full matrix for the matlab script
    filtered_matrix_tmp_filename = os.path.join(tmp_output_folder, 'nonreplicating_matrix.txt')
    full_matrix_tmp_filename = os.path.join(tmp_output_folder, 'full_matrix.txt')
    
    np.savetxt(filtered_matrix_tmp_filename, filtered_matrix)
    np.savetxt(full_matrix_tmp_filename, matrix)

    # Map the batch to integers for matlab, and write out to a file so matlab can read
    # Note that yes, the batch_classes should match up with the filtered matrix, not
    # the full matrix
    batch_classes = get_batch_classes(dataset = [barcodes, filtered_conditions, filtered_matrix], sample_table = sample_table, batch_col = batch_col)
    class_tmp_filename = os.path.join(tmp_output_folder, 'classes.txt')
    writeList(batch_classes, class_tmp_filename)
   
    output_tmp_filename = os.path.join(tmp_output_folder, 'full_matrix_lda_normalized.txt')
    runLDAMatlabFunc(filtered_matrix_filename = filtered_matrix_tmp_filename, \
            matrix_filename = full_matrix_tmp_filename, \
            class_filename = class_tmp_filename, \
            ncomps = ncomps, \
            output_filename = output_tmp_filename)
    # The X norm that is returned is the full matrix. In the future, we could add in
    # returning the components to remove so they can be visualized or applied to other
    # one-off datasets
    Xnorm =  scipy.genfromtxt(output_tmp_filename)

    ## Dump the dataset out!
    #output_filename = os.path.join(mtag_effect_folder, 'scaleddeviation_full_mtag_lda_{}.dump.gz'.format(ncomps))
    #of = gzip.open(output_filename, 'wb')
    #cPickle.dump([barcodes, conditions, Xnorm], of)
    #of.close()

    return [barcodes, conditions, Xnorm]
开发者ID:monprin,项目名称:BEAN-counter,代码行数:60,代码来源:svd_correction.py

示例2: lapnormadj

def lapnormadj(A):

    """
    Function to perform Laplacian Normalization on m x n matrix
    :param A: Adjacency Matrix
    :return: Laplace normalised matrix
    """

    import scipy
    import numpy as np
    from scipy.sparse import csgraph
    n,m = A.shape
    d1 = A.sum(axis=1).flatten()
    d2 = A.sum(axis=0).flatten()
    d1_sqrt = 1.0/scipy.sqrt(d1)
    d2_sqrt = 1.0/scipy.sqrt(d2)
    d1_sqrt[scipy.isinf(d1_sqrt)] = 10000
    d2_sqrt[scipy.isinf(d2_sqrt)] = 10000
    la = np.zeros(shape=(n,m))

    for i in range(0,n):
        for j in range(0,m):
          la[i,j] = A[i,j]/(d1_sqrt[i]*d2_sqrt[j])

    #D1 = scipy.sparse.spdiags(d1_sqrt, [0], n,m, format='coo')
    #D2 = scipy.sparse.spdiags(d2_sqrt, [0], n,m, format='coo')

    la[la < 1e-5] = 0

    return  scipy.sparse.coo_matrix(la)
开发者ID:abhik1368,项目名称:diseasepathway_prediction,代码行数:30,代码来源:computeRwr.py

示例3: LDA_batch_normalization

def LDA_batch_normalization(dataset, sample_table, batch_col, output_folder, n_comps): # this is actually the batch normalization method
   
    tmp_output_folder = os.path.join(output_folder, 'tmp')

    if not os.path.isdir(tmp_output_folder):
        os.makedirs(tmp_output_folder)
    
    barcodes, filtered_conditions, filtered_matrix, conditions, matrix = dataset
    
    # Remove any remaining NaNs and Infs from the filtered matrix - they would screw
    # up the LDA. 
    filtered_matrix[scipy.isnan(filtered_matrix)] = 0
    filtered_matrix[scipy.isinf(filtered_matrix)] = 0

    # For full matrix, also eliminate NaNs and Infs, BUT preserve the indices and values
    # so they can be added back into the matrix later (not implemented yet, and may never
    # be - there should no longer be NaNs and Infs in the dataset)
    # The NaNs and Infs will mess up the final step of the MATLAB LDA script, which uses
    # matrix multiplication to remove the specified number of components!
    matrix_nan_inds = scipy.isnan(matrix)
    matrix_nan_vals = matrix[matrix_nan_inds]
    matrix_inf_inds = scipy.isinf(matrix)
    matrix_inf_vals = matrix[matrix_inf_inds]

    matrix[matrix_nan_inds] = 0
    matrix[matrix_inf_inds] = 0

    # Save both the small matrix (for determining the components to remove) and the 
    # full matrix for the matlab script
    filtered_matrix_tmp_filename = os.path.join(tmp_output_folder, 'nonreplicating_matrix.txt')
    full_matrix_tmp_filename = os.path.join(tmp_output_folder, 'full_matrix.txt')
    
    np.savetxt(filtered_matrix_tmp_filename, filtered_matrix)
    np.savetxt(full_matrix_tmp_filename, matrix)

    # Map batch classes to integers
    batch_classes = get_batch_classes(dataset = [barcodes, filtered_conditions, filtered_matrix], sample_table = sample_table, batch_col = batch_col)
	
    # Checks number of classes and limits ncomps
    a = [x > 0 for x in np.sum(np.absolute(filtered_matrix), axis=0)]
    classes = np.asarray([batch_classes[i] for i in range(len(batch_classes)) if a[i]])
    n_samples = filtered_matrix.shape[0]
    n_classes = len(np.unique(classes))
    if n_samples == n_classes:
        print "ERROR: The number of samples is equal to the number of classes. Exiting"
    if n_classes <= n_comps:
        print "Fewer classes, " + str(n_classes) + ", than components. Setting components to " + str(n_classes-1)
        n_comps = n_classes-1

    # Runs LDA
    #Xnorm = scikit_lda(filtered_matrix, matrix, batch_classes, n_comps)
    Xnorm = outer_python_lda(filtered_matrix, matrix, batch_classes, n_comps)

    return [barcodes, conditions, Xnorm, n_comps]
开发者ID:csbio,项目名称:BEAN-counter,代码行数:54,代码来源:batch_correction.py

示例4: setRunParams

    def setRunParams(self, ic=[], params=[], t0=[], tend=[], gt0=[], refine=0,
                     specTimes=[], bounds=[]):
        if not self.initBasic:
            raise InitError, 'You must initialize the integrator before setting params. (initBasic)'

        #if self.initParams == True:
        #    raise InitError, 'You must clear params before setting them. Use clearParams()'

        if self.checkRunParams(ic, params, t0, tend, gt0, refine, specTimes,
                               bounds):
            self.ic = ic
            self.params = params
            self.t0 = float(t0)
            self.tend = float(tend)
            self.gt0 = float(gt0)
            self.refine = int(refine)
            self.specTimes = specTimes

            if self.t0 < self.tend:
                self.direction = 1
            else:
                self.direction = -1

            # Set bounds
            if bounds != []:
                self.upperBounds = bounds[1]
                self.lowerBounds = bounds[0]
                for i in range(self.phaseDim + self.paramDim):
                    if isinf(self.upperBounds[i]) and self.upperBounds[i] > 0:
                        self.upperBounds[i] = abs(float(self.defaultBound))
                    elif isinf(self.upperBounds[i]) and self.upperBounds[i] < 0:
                        self.upperBounds[i] = -abs(float(self.defaultBound))

                    if isinf(self.lowerBounds[i]) and self.lowerBounds[i] > 0:
                        self.lowerBounds[i] = abs(float(self.defaultBound))
                    elif isinf(self.lowerBounds[i]) and self.lowerBounds[i] < 0:
                        self.lowerBounds[i] = -abs(float(self.defaultBound))
            else:
                self.upperBounds = [abs(float(self.defaultBound)) for x in range(self.phaseDim + self.paramDim)]
                self.lowerBounds = [-abs(float(self.defaultBound)) for x in range(self.phaseDim + self.paramDim)]

            retval = self._integMod.SetRunParameters(self.ic, self.params,
                                 self.gt0, self.t0, self.tend, self.refine,
                                 len(self.specTimes), self.specTimes,
                                 self.upperBounds, self.lowerBounds)

            if retval[0] != 1:
                raise InitError, 'SetRunParameters call failed!'

            self.canContinue = False
            self.setParams = True
开发者ID:BenjaminBerhault,项目名称:Python_Classes4MAD,代码行数:51,代码来源:integrator.py

示例5: sigmoid

def sigmoid(X):
##    e = sp.exp(-X)
##    e = 0.0000001 if e ==
    v = 1.  / (1. + sp.exp(-X))
    if sp.isnan(v).sum() or sp.isinf(v).sum():
        i=0
    return v
开发者ID:baxton,项目名称:KNN,代码行数:7,代码来源:ch2.py

示例6: matfile_featfunc

def matfile_featfunc(fname,
                     suffix,
                     kernel_type = DEFAULT_KERNEL_TYPE,
                     variable_name = DEFAULT_VARIABLE_NAME):
    
    fname += suffix
    
    error = False
    try:
        if kernel_type == "exp_mu_da":
            # hack for GB with 204 dims
            fdata = io.loadmat(fname)[variable_name].reshape(-1, 204)
        else:
            fdata = io.loadmat(fname)[variable_name].ravel()

    except TypeError:
        fname_error = fname+'.error'
        print "[ERROR] couldn't open", fname, "moving it to", fname_error
        shutil.move(fname, fname_error)
        error = True

    except:
        print "[ERROR] (unknown) with", fname
        raise

    if error:
        raise RuntimeError("An error occured while loading '%s'"
                           % fname)

    assert(not sp.isnan(fdata).any())
    assert(not sp.isinf(fdata).any())

    return fdata
开发者ID:jaberg,项目名称:sclas,代码行数:33,代码来源:tmp.py

示例7: _process_image

    def _process_image(self, fname):

        kernel_type = self.kernel_type
        variable_name = self.variable_name

        fname += self.input_suffix

        error = False
        try:
            if kernel_type == "exp_mu_da":
                # hack for GB with 204 dims
                # fdata = io.loadmat(fname)[variable_name].reshape(-1, 204)
                fdata = self._load_image(fname).reshape(-1, 204)
            else:
                fdata = self._load_image(fname).ravel()
                # fdata = io.loadmat(fname)[variable_name].ravel()

        except TypeError:
            fname_error = fname + ".error"
            print "[ERROR] couldn't open", fname, "moving it to", fname_error
            # os.unlink(fname)
            shutil.move(fname, fname_error)
            error = True

        except:
            print "[ERROR] (unknown) with", fname
            raise

        if error:
            raise RuntimeError("An error occured while loading '%s'" % fname)

        assert not sp.isnan(fdata).any()
        assert not sp.isinf(fdata).any()

        return fdata
开发者ID:npinto,项目名称:sclas,代码行数:35,代码来源:kernel_generate_fromcsv.py

示例8: evaluer

    def evaluer(self):
        """ Renvoie une valeur numérique de l'expression
        """
        
        # On crée un dictionnaire de variables : {'nom' : valeur}
        #    (nécessaire pour "eval")

        dict = {}
        for n, v in self.vari.items():
            print " ", n, v
            dict[n] = v.v[0]
        
        global safe_dict
        dict.update(safe_dict)
        
        # On fait l'évaluation
        try:
            v = eval(self.py_expr, {"__builtins__": None}, dict)
        except:
            return False
#        print type (v)
        # On analyse le résultat
        if not type(v) == float and not type(v) == scipy.float64 and not type(v) == int:
            return False
        elif scipy.isinf(v) or scipy.isnan(v):
            return None
        else:
            return v
开发者ID:cedrick-f,项目名称:ioino,代码行数:28,代码来源:widgets.py

示例9: mmse_stsa

def mmse_stsa(infile, outfile, noise_sum):
    signal, params = read_signal(infile, WINSIZE)
    nf = len(signal)/(WINSIZE/2) - 1
    sig_out=sp.zeros(len(signal),sp.float32)

    G = sp.ones(WINSIZE)
    prevGamma = G
    alpha = 0.98
    window = sp.hanning(WINSIZE)
    gamma15=spc.gamma(1.5)
    lambdaD = noise_sum / 5.0
    percentage = 0
    for no in xrange(nf):
        p = int(math.floor(1. * no / nf * 100))
        if (p > percentage):
            percentage = p
            print "{}%".format(p),

        y = get_frame(signal, WINSIZE, no)
        Y = sp.fft(y*window)
        Yr = sp.absolute(Y)
        Yp = sp.angle(Y)
        gamma = Yr**2/lambdaD
        xi = alpha * G**2 * prevGamma + (1-alpha)*sp.maximum(gamma-1, 0)
        prevGamma = gamma
        nu = gamma * xi / (1+xi)
        G = (gamma15 * sp.sqrt(nu) / gamma ) * sp.exp(-nu/2) * ((1+nu)*spc.i0(nu/2)+nu*spc.i1(nu/2))
        idx = sp.isnan(G) + sp.isinf(G)
        G[idx] = xi[idx] / (xi[idx] + 1)
        Yr = G * Yr
        Y = Yr * sp.exp(Yp*1j)
        y_o = sp.real(sp.ifft(Y))
        add_signal(sig_out, y_o, WINSIZE, no)
    
    write_signal(outfile, params, sig_out)
开发者ID:swkoubou,项目名称:peppermill-test,代码行数:35,代码来源:MMSE_STSA.py

示例10: run

    def run(self,phase=None):
        r'''
        '''
        logger.warning('This algorithm can take some time...')
        graph = self._net.create_adjacency_matrix(data=self._net['throat.length'],sprsfmt='csr')

        if phase is not None:
            self._phase = phase
            if 'throat.occupancy' in self._phase.props():
                temp = self._net['throat.length']*(self._phase['throat.occupancy']==1)
                graph = self._net.create_adjacency_matrix(data=temp,sprsfmt='csr',prop='temp')

        #self._net.tic()
        path = spgr.shortest_path(csgraph = graph, method='D', directed = False)
        #self._net.toc()

        Px = sp.array(self._net['pore.coords'][:,0],ndmin=2)
        Py = sp.array(self._net['pore.coords'][:,1],ndmin=2)
        Pz = sp.array(self._net['pore.coords'][:,2],ndmin=2)

        Cx = sp.square(Px.T - Px)
        Cy = sp.square(Py.T - Py)
        Cz = sp.square(Pz.T - Pz)
        Ds = sp.sqrt(Cx + Cy + Cz)

        temp = path/Ds
        #temp = path

        temp[sp.isnan(temp)] = 0
        temp[sp.isinf(temp)] = 0

        return temp
开发者ID:Maggie1988,项目名称:OpenPNM,代码行数:32,代码来源:__Tortuosity__.py

示例11: run

    def run(self, phase=None, throats=None):
        logger.warning('This algorithm can take some time...')
        conduit_lengths = sp.sum(misc.conduit_lengths(network=self._net,
                                 mode='centroid'), axis=1)
        graph = self._net.create_adjacency_matrix(data=conduit_lengths,
                                                  sprsfmt='csr')

        if phase is not None:
            self._phase = phase
            if 'throat.occupancy' in self._phase.props():
                temp = conduit_lengths*(self._phase['throat.occupancy'] == 1)
                graph = self._net.create_adjacency_matrix(data=temp,
                                                          sprsfmt='csr',
                                                          prop='temp')
        path = spgr.shortest_path(csgraph=graph, method='D', directed=False)

        Px = sp.array(self._net['pore.coords'][:, 0], ndmin=2)
        Py = sp.array(self._net['pore.coords'][:, 1], ndmin=2)
        Pz = sp.array(self._net['pore.coords'][:, 2], ndmin=2)

        Cx = sp.square(Px.T - Px)
        Cy = sp.square(Py.T - Py)
        Cz = sp.square(Pz.T - Pz)
        Ds = sp.sqrt(Cx + Cy + Cz)

        temp = path / Ds

        temp[sp.isnan(temp)] = 0
        temp[sp.isinf(temp)] = 0

        return temp
开发者ID:amirdezashibi,项目名称:OpenPNM,代码行数:31,代码来源:__Tortuosity__.py

示例12: sample

    def sample(self, model, evidence):
        z = evidence['z']
        T = evidence['T']
        g = evidence['g']
        h = evidence['h']
        transition_var_g = evidence['transition_var_g']
        shot_id = evidence['shot_id']

        observation_var_g = model.known_params['observation_var_g']
        observation_var_h = model.known_params['observation_var_h']
        prior_mu_g = model.hyper_params['g']['mu'] 
        prior_cov_g = model.hyper_params['g']['cov'] 
        N = len(z)
        n = len(g)

        ## Make g, h, and z vector valued to avoid ambiguity
        #g = g.copy().reshape((n, 1))
        #h = h.copy().reshape((n, 1))
        #
        pdb.set_trace()
        z_g = ma.asarray(nan + zeros(n))
        obs_cov = ma.asarray(inf + zeros(n))
        if 1 in T:
            z_g[T==1] = z[T==1]
            obs_cov[T==1] = observation_var_g
        if 2 in T:
            z_g[T==2] = z[T==2] - h[T==2]
            obs_cov[T==2] = observation_var_h
        #for i in xrange(n):
        #    z_i = z[shot_id == i]
        #    T_i = T[shot_id == i]
        #    if 1 in T_i and 2 in T_i:
        #        # Sample mean and variance for multiple observations
        #        n_obs_g, n_obs_h = sum(T_i == 1), sum(T_i == 2)
        #        obs_cov_g, obs_cov_h = observation_var_g/n_obs_g, observation_var_h/n_obs_h
        #        z_g[i] = (mean(z_i[T_i == 1])/obs_cov_g + mean(z_i[T_i == 2] - h[i])/obs_cov_h)/(1/obs_cov_g + 1/obs_cov_h)
        #        obs_cov[i] = 1/(1/obs_cov_g + 1/obs_cov_h)
        #    elif 1 in T_i:
        #        n_obs_g = sum(T_i == 1) 
        #        z_g[i] = mean(z_i[T_i == 1])
        #        obs_cov[i] = observation_var_g/n_obs_g
        #    elif 2 in T_i:
        #        n_obs_h = sum(T_i == 2) 
        #        z_g[i] = mean(z_i[T_i == 2] - h[i])
        #        obs_cov[i] = observation_var_h/n_obs_h

        z_g[isnan(z_g)] = ma.masked
        obs_cov[isinf(obs_cov)] = ma.masked

        kalman = self._kalman
        kalman.initial_state_mean = array([prior_mu_g[0],])
        kalman.initial_state_covariance = array([prior_cov_g[0],])
        kalman.transition_matrices = eye(1)
        kalman.transition_covariance = array([transition_var_g,])
        kalman.observation_matrices = eye(1)
        kalman.observation_covariance = obs_cov
        sampled_g = forward_filter_backward_sample(kalman, z_g, prior_mu_g, prior_cov_g)
        return sampled_g.reshape((n,))
开发者ID:bwallin,项目名称:thesis-code,代码行数:58,代码来源:model_simulation_zeta.py

示例13: _oneEvaluation

 def _oneEvaluation(self, evaluable):
     """ This method should be called by all optimizers for producing an evaluation. """
     if self._wasUnwrapped:
         self.wrappingEvaluable._setParameters(evaluable)
         res = self.__evaluator(self.wrappingEvaluable)
     elif self._wasWrapped:            
         res = self.__evaluator(evaluable.params)
     else:            
         res = self.__evaluator(evaluable)
         ''' added by JPQ '''
         if self.constrained :
             self.feasible = self.__evaluator.outfeasible
             self.violation = self.__evaluator.outviolation
         # ---
     if isscalar(res):
         # detect numerical instability
         if isnan(res) or isinf(res):
             raise DivergenceError
         # always keep track of the best
         if (self.numEvaluations == 0
             or self.bestEvaluation is None
             or (self.minimize and res <= self.bestEvaluation)
             or (not self.minimize and res >= self.bestEvaluation)):
             self.bestEvaluation = res
             self.bestEvaluable = evaluable.copy()
     
     self.numEvaluations += 1
     
     # if desired, also keep track of all evaluables and/or their fitness.                        
     if self.storeAllEvaluated:
         if self._wasUnwrapped:            
             self._allEvaluated.append(self.wrappingEvaluable.copy())
         elif self._wasWrapped:            
             self._allEvaluated.append(evaluable.params.copy())
         else:            
             self._allEvaluated.append(evaluable.copy())        
     if self.storeAllEvaluations:
         if self._wasOpposed and isscalar(res):
             ''' added by JPQ '''
             if self.constrained :
                 self._allEvaluations.append([-res,self.feasible,self.violation])
             # ---
             else:
                 self._allEvaluations.append(-res)
         else:
             ''' added by JPQ '''
             if self.constrained :
                 self._allEvaluations.append([res,self.feasible,self.violation])
             # ---
             else:
                 self._allEvaluations.append(res)
     ''' added by JPQ '''
     if self.constrained :
         return [res,self.feasible,self.violation]
     else:
     # ---
         return res
开发者ID:PatrickHunter,项目名称:pybrain,代码行数:57,代码来源:optimizer.py

示例14: makehist

def makehist(testpath,npulses):
    """
        This functions are will create histogram from data made in the testpath.
        Inputs
            testpath - The path that the data is located.
            npulses - The number of pulses in the sim.
    """
    sns.set_style("whitegrid")
    sns.set_context("notebook")
    params = ['Ne', 'Te', 'Ti', 'Vi']
    histlims = [[1e10, 3e11], [1000., 3000.], [100., 2500.], [-400., 400.]]
    erlims = [[-2e11, 2e11], [-1000., 1000.], [-800., 800], [-400., 400.]]
    erperlims = [[-100., 100.]]*4
    lims_list = [histlims, erlims, erperlims]
    errdict = makehistdata(params, testpath)[:4]
    ernames = ['Data', 'Error', 'Error Percent']


    # Two dimensiontal histograms
    pcombos = [i for i in itertools.combinations(params, 2)]
    c_rows = int(math.ceil(float(len(pcombos))/2.))
    (figmplf, axmat) = plt.subplots(c_rows, 2, figsize=(12, c_rows*6), facecolor='w')
    axvec = axmat.flatten()
    for icomn, icom in enumerate(pcombos):
        curax = axvec[icomn]
        str1, str2 = icom
        _, _, _ = make2dhist(testpath, PARAMDICT[str1], PARAMDICT[str2], figmplf, curax)
    filetemplate = str(Path(testpath).joinpath('AnalysisPlots', 'TwoDDist'))
    plt.tight_layout()
    plt.subplots_adjust(top=0.95)
    figmplf.suptitle('Pulses: {0}'.format(npulses), fontsize=20)
    fname = filetemplate+'_{0:0>5}Pulses.png'.format(npulses)
    plt.savefig(fname)
    plt.close(figmplf)
    # One dimensiontal histograms
    for ierr, iername in enumerate(ernames):
        filetemplate = str(Path(testpath).joinpath('AnalysisPlots', iername))
        (figmplf, axmat) = plt.subplots(2, 2, figsize=(20, 15), facecolor='w')
        axvec = axmat.flatten()
        for ipn, iparam in enumerate(params):
            plt.sca(axvec[ipn])
            if sp.any(sp.isinf(errdict[ierr][iparam])):
                continue
            binlims = lims_list[ierr][ipn]
            bins = sp.linspace(binlims[0], binlims[1], 100)
            xdata = errdict[ierr][iparam]
            xlog = sp.logical_and(xdata >= binlims[0], xdata < binlims[1])

            histhand = sns.distplot(xdata[xlog], bins=bins, kde=True, rug=False)

            axvec[ipn].set_title(iparam)
        figmplf.suptitle(iername +' Pulses: {0}'.format(npulses), fontsize=20)
        fname = filetemplate+'_{0:0>5}Pulses.png'.format(npulses)
        plt.savefig(fname)
        plt.close(figmplf)
开发者ID:jswoboda,项目名称:RadarDataSim,代码行数:55,代码来源:statstest.py

示例15: score_image

    def score_image(self, image):
        """
        This finds whether the image is cloudy or not.

        :param image:
        :return:
        """

        pickle_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'cache/ck_cloud.p')

        # Load the cloud thresholds
        [cloudy_model, partly_cloudy_model, clear_model] = pickle.load(open(pickle_file, "rb"))

        mean, std, window_size = self.process_image(image)
        p = self.fit_model(window_size, std)
        #p = self.fit_model(window_size, mean)

        # rebuild the functions of the window range,
        # find the residual vector and then the euclidean norm.
        # the one with the smallest should be the model.

        fitfunc = lambda p, x: p[0] * x ** p[1]

        clear_residual = scipy.absolute(fitfunc(p, window_size) - fitfunc(clear_model, window_size))
        pc_residual = scipy.absolute(fitfunc(p, window_size) - fitfunc(partly_cloudy_model, window_size))
        cloudy_residual = scipy.absolute(fitfunc(p, window_size) - fitfunc(cloudy_model, window_size))

        clear_residual[scipy.isinf(clear_residual)] = 0.0
        clear_residual[scipy.isnan(clear_residual)] = 0.0
        pc_residual[scipy.isinf(pc_residual)] = 0.0
        pc_residual[scipy.isnan(pc_residual)] = 0.0
        cloudy_residual[scipy.isinf(cloudy_residual)] = 0.0
        cloudy_residual[scipy.isnan(cloudy_residual)] = 0.0

        clear_norm = scipy.linalg.norm(clear_residual)
        pc_norm = scipy.linalg.norm(pc_residual)
        cloudy_norm = scipy.linalg.norm(cloudy_residual)

        smallest_val = [clear_norm, pc_norm, cloudy_norm].index(min([clear_norm, pc_norm, cloudy_norm]))
        lg.debug('score :: ' + str(smallest_val))

        return smallest_val
开发者ID:marrabld,项目名称:dimitripy,代码行数:42,代码来源:cloud_screening.py


注:本文中的scipy.isinf函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。