当前位置: 首页>>代码示例>>Python>>正文


Python scipy.hstack函数代码示例

本文整理汇总了Python中scipy.hstack函数的典型用法代码示例。如果您正苦于以下问题:Python hstack函数的具体用法?Python hstack怎么用?Python hstack使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了hstack函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: bounds

def bounds(Xs,Ys,ns=100):
    #use a gp to infer mean and bounds on sets of x/y data that have diffent x
    #f,a = plt.subplots(2)
    #for i in xrange(len(Ys)):
    #    a[0].plot(Xs[i],Ys[i])
    
    X = sp.hstack(Xs)
    np = X.size
    Y = sp.hstack(Ys)
    X.resize([np,1])
    Y.resize([np,1])
    #a[1].plot(X,Y,'r.')
    np = X.size
    S = sp.zeros(np)
    D = [[sp.NaN]]*np
    ki = GPdc.MAT52CS
    mprior = sp.array([1.,2.,1.])
    sprior = sp.array([2.,2.,2.])
    #MAPH = GPdc.searchMAPhyp(X,Y,S,D,mprior,sprior, ki,mx=500)
    MAPH = sp.array([0.5,5.,0.3])
    g = GPdc.GPcore(X,Y,S,D,GPdc.kernel(ki,1,MAPH))
    sup = sp.linspace(min(X),max(X),ns)
    [m,V] = g.infer_diag_post(sup,[[sp.NaN]]*ns)
    std = sp.sqrt(V+MAPH[2])
    #plt.fill_between(sup.flatten(),(m-std).flatten(),(m+std).flatten(),facecolor='lightblue',edgecolor='lightblue',alpha=0.5)
    #a[1].plot(sup,m.flatten(),'b')
    return [sup,m,std]
开发者ID:markm541374,项目名称:GPc,代码行数:27,代码来源:OPTutils.py

示例2: make_data_twoclass

def make_data_twoclass(N=50):
    # generates some toy data
    mu = sp.array([[0,2],[0,-2]]).T
    C = sp.array([[5.,4.],[4.,5.]])
    X = sp.hstack((mvn(mu[:,0],C,N/2).T, mvn(mu[:,1],C,N/2).T))
    Y = sp.hstack((sp.ones((1,N/2.)),-sp.ones((1,N/2.))))
    return X,Y
开发者ID:nikste,项目名称:doubly_random_svm,代码行数:7,代码来源:training_comparison_functions.py

示例3: getResultMatrix

    def getResultMatrix(self, stst=False, lbls=False):
        """
        Returns an array of result data. I'm keepin this for backwards compatibility but
        it will be replaced by a getOutput() method when this scanner is updated to use
        the new data_scan object.

        - *stst* add steady-state data to output array
        - *lbls* return a tuple of (array, column_header_list)

        If *stst* is True output has dimensions [scan_parameters]+[state_species+state_flux]+[Useroutput]
        otherwise [scan_parameters]+[Useroutput].
        """
        output_array = None
        labels = []
        if stst:
            if self.HAS_USER_OUTPUT:
                output_array = scipy.hstack([self.ScanSpace, self.SteadyStateResults, self.UserOutputResults])
                labels = self.GenOrder+list(self.mod.species)+list(self.mod.reactions)+self.UserOutputList
            else:
                output_array = scipy.hstack([self.ScanSpace, self.SteadyStateResults])
                labels = self.GenOrder+list(self.mod.species)+list(self.mod.reactions)
        else:
            output_array = scipy.hstack([self.ScanSpace, self.UserOutputResults])
            labels = self.GenOrder+self.UserOutputList
        if lbls:
            return output_array, labels
        else:
            return output_array
开发者ID:palm86,项目名称:pysces,代码行数:28,代码来源:PyscesScan.py

示例4: __init__

    def __init__(self, type='random', pars=parameters()):

        if type == 'random':
            ee = (rand(pars['Ne'], pars['Ne']) < pars['p_ee'])
            ei = (rand(pars['Ne'], pars['Ni']) < pars['p_ei'])
            ii = (rand(pars['Ni'], pars['Ni']) < pars['p_ii'])
            ie = (rand(pars['Ni'], pars['Ne']) < pars['p_ie'])
            self.A = vstack((hstack((ee, ei)), hstack((ie, ii))))
            self.A[range(pars['Ne'] + pars['Ni']), range(pars['Ne'] + pars['Ni'])] = 0  # remove selfloops

        elif type == 'none':
            self.A = zeros((pars['N'], pars['N']))  # no connectivity

        elif type == 'uni_torus':  # torus with uniform connectivity profile
            self.A = zeros((pars['N'], pars['N']))

            # construct matrix of pairwise distance
            distMat = zeros((pars['N'], pars['N']))
            for n1 in range(pars['N']):
                coord1 = linear2grid(n1, pars['N_col'])
                for n2 in arange(n1 + 1, pars['N']):
                    coord2 = linear2grid(n2, pars['N_col']) - coord1  # this sets neuron n1 to the origin
                    distMat[n1, n2] = toric_length(coord2, pars['N_row'], pars['N_col'])
            distMat = distMat + distMat.transpose()

            # construct adjajency matrix
            for n1 in range(pars['N']):
                neighbor_ids = nonzero(distMat[:, n1] < pars['sigma_con'])[0]
                random.shuffle(neighbor_ids)
                idx = neighbor_ids[0:min([pars['ncon'], len(neighbor_ids)])]
                self.A[idx, n1] = 1
        else:
            print "type " + type + " not yet implemented"
开发者ID:DrKrantz,项目名称:snn,代码行数:33,代码来源:connectivityMatrix.py

示例5: MNEfit

def MNEfit(stim,resp,order):
    # in order for dlogloss to work, we need to know -<g(yt(n),xt)>data
    # == calculate the constrained averages over the data set
    Nsamples = sp.size(stim,0)
    Ndim = sp.size(stim,1)
    psp = sp.mean(sp.mean(resp)) #spike probability (first constraint)
    avg = (1.0*stim.T*resp)/(Nsamples*1.0)
    avgs = sp.vstack((psp,avg))
    if(order > 1):
        avgsqrd = (stim.T*1.0)*(sp.array(sp.tile(resp,(1,Ndim)))*sp.array(stim))/(Nsamples*1.0)
        avgsqrd = sp.reshape(avgsqrd,(Ndim**2,1))
        avgs = sp.vstack((avgs,avgsqrd))
    
    #initialize params:
    pstart = sp.log(1/avgs[0,0] - 1)
    pstart = sp.hstack((pstart,(.001*(2*sp.random.rand(Ndim)-1))))
    if(order > 1):
        temp = .0005*(2*sp.random.rand(Ndim,Ndim)-1)
        pstart = sp.hstack((pstart,sp.reshape(temp+temp.T,(1,Ndim**2))[0]))
    
    #redefine functions with fixed vals:
    def logLoss(p):
        return LLF.log_loss(p, stim, resp, order)
    def dlogLoss(p):
        return LLF.d_log_loss(p, stim, avgs, order)
    #run the function:
    #pfinal = opt.fmin_tnc(logLoss,pstart,fprime=dlogLoss)
    # conjugate-gradient:
    pfinal = opt.fmin_cg(logLoss,pstart,fprime=dlogLoss)
    #pfinal = opt.fmin(logLoss,pstart,fprime=dlogLoss)
    return pfinal
开发者ID:MarvinT,项目名称:pyMNE,代码行数:31,代码来源:MNEfit.py

示例6: solver

def solver(M, _k, _sigma=0., _tol=1e-7):

    #t_start = time()
    try:
        if scipy.__version__.split('.', 2)[1] == '10':
            #
            # eigsh sparse eigensolver, with sigma setting (in scipy>=0.10) 
            #
            eigval, eigvec = SparseLinalg.eigsh(M, k=_k, sigma=_sigma, tol=_tol)
        elif scipy.__version__.split('.', 2)[1] in ('8', '9'):
            #
            # eigsh sparse eigensolver, no sigma setting (in scipy<0.10) 
            # ask more then _k eigvecs, otherwise solver is unstable
            #
            eigval, eigvec = SparseLinalg.eigsh(M, k=_k*10, which='SM')
            #_, eigval, eigvec = SparseLinalg.svds(W, k=_k*10)
    except SparseLinalg.arpack.ArpackNoConvergence as excobj:
        print "ARPACK iteration did not converge"
        eigval, eigvec = excobj.eigenvalues, excobj.eigenvectors
        eigval = scipy.hstack((eigval, numpy.zeros(_k-eigval.shape[0])))
        eigvec = scipy.hstack((eigvec, numpy.zeros((n,_k-eigvec.shape[1]))))
        #
        # If eigval/eigvec pairs are not sorted on eigvals value
        #
        #ixEig = numpy.argsort(eigval)
        #eigval = eigval[ixEig]
        #eigvec = eigvec[:,ixEig]
        #print 'Eigen-values/vectors found in %.6fs' % (time()-t_start)
    return eigval, eigvec
开发者ID:andreamaf,项目名称:manifoldLearn,代码行数:29,代码来源:eigensolver.py

示例7: coulomb_mat_eigvals

def coulomb_mat_eigvals(atoms, at_idx, r_cut, do_calc_connect=True, n_eigs=20):

    if do_calc_connect:
        atoms.set_cutoff(8.0)
        atoms.calc_connect()
    pos = sp.vstack((sp.asarray([sp.asarray(a.diff) for a in atoms.neighbours[at_idx]]), sp.zeros(3)))
    Z = sp.hstack((sp.asarray([atoms.z[a.j] for a in atoms.neighbours[at_idx]]), atoms.z[at_idx]))

    M = sp.outer(Z, Z) / (sp.spatial.distance_matrix(pos, pos) + np.eye(pos.shape[0]))
    sp.fill_diagonal(M, 0.5 * Z ** 2.4)

    # data = [[atoms.z[a.j], sp.asarray(a.diff)] for a in atoms.neighbours[at_idx]]
    # data.append([atoms.z[at_idx], sp.array([0,0,0])]) # central atom
    # M = sp.zeros((len(data), len(data)))
    # for i, atom1 in enumerate(data):
    #     M[i,i] = 0.5 * atom1[0] ** 2.4
    #     for j, atom2 in enumerate(data[i+1:]):
    #         j += i+1
    #         M[i,j] =  atom1[0] * atom2[0] / LA.norm(atom1[1] - atom2[1])
    # M = 0.5 * (M + M.T)
    eigs = (LA.eigh(M, eigvals_only=True))[::-1]
    if n_eigs == None:
        return eigs # all
    elif eigs.size >= n_eigs:
        return eigs[:n_eigs] # only first few eigenvectors
    else:
        return sp.hstack((eigs, sp.zeros(n_eigs - eigs.size))) # zero-padded extra fields
开发者ID:marcocaccin,项目名称:MarcoGP,代码行数:27,代码来源:forcegp_module.py

示例8: cv

def cv(nn_name,d_num = 10000,k_fold = 7,score_metrics = 'accuracy',verbose = 0):
    suff = str(nn_name[:2])
    if nn_name.find('calib') > 0:
        X_data_name = 'train_data_icalib_'+ suff +  '.npy'
        y_data_name = 'labels_icalib_'+ suff + '.npy'
    else:
        X_data_name = 'train_data_'+ suff +  '.npy'
        y_data_name = 'labels_'+ suff + '.npy'
    X,y = sp.load(X_data_name),sp.load(y_data_name)
    d_num = min(len(X),d_num)        
    X = X[:d_num]
    y = y[:d_num] 
    rates12 = sp.hstack((0.05 * sp.ones(25,dtype=sp.float32),0.005*sp.ones(15,dtype=sp.float32),0.0005*sp.ones(10,dtype=sp.float32)))
    rates24 = sp.hstack((0.01 * sp.ones(25,dtype=sp.float32),0.0001*sp.ones(15,dtype=sp.float32)))
    rates48 = sp.hstack ([0.05 * sp.ones(15,dtype=sp.float32),0.005*sp.ones(10,dtype=sp.float32) ])
    if nn_name == '48-net':
        X12 = sp.load('train_data_12.npy')[:d_num]
        X24 = sp.load('train_data_24.npy')[:d_num]
    elif nn_name == '24-net':
        X12 = sp.load('train_data_12.npy')[:d_num]
        
    if score_metrics == 'accuracy':
        score_fn = accuracy_score
    else:
        score_fn = f1_score 
    scores = []
    iteration = 0
    for t_indx,v_indx in util.kfold(X,y,k_fold=k_fold):
        nn = None
        X_train,X_test,y_train,y_test = X[t_indx], X[v_indx], y[t_indx], y[v_indx]
        
        #print('\t \t',str(iteration+1),'fold out of ',str(k_fold),'\t \t' )
        if nn_name == '24-net':
            nn = Cnnl(nn_name = nn_name,l_rates=rates24,subnet=Cnnl(nn_name = '12-net',l_rates=rates12).load_model(
            '12-net_lasagne_.pickle'))
            nn.fit(X = X_train,y = y_train,X12 = X12[t_indx])
        elif nn_name == '48-net':
            nn = Cnnl(nn_name = nn_name,l_rates=rates48,subnet=Cnnl(nn_name = '24-net',l_rates=rates24,subnet=Cnnl(nn_name = '12-net',l_rates=rates12).load_model(
            '12-net_lasagne_.pickle')).load_model('24-net_lasagne_.pickle'))
            nn.fit(X = X_train,y = y_train,X12 = X12[t_indx],X24 = X24[t_indx])
        else:
            
            nn = Cnnl(nn_name = nn_name,l_rates=rates12,verbose=verbose)
            nn.fit(X = X_train,y = y_train)
    
        if nn_name == '24-net':  
            y_pred = nn.predict(X_test,X12=X12[v_indx])
        elif nn_name == '48-net':
            y_pred = nn.predict(X_test,X12=X12[v_indx],X24=X24[v_indx])
        else:
            y_pred = nn.predict(X_test)
        score = score_fn(y_test,y_pred)
        
        #print(iteration,'fold score',score)
        scores.append(score)
        iteration += 1
    score_mean = sp.array(scores).mean()
    print(d_num,'mean score',score)
    return score_mean
开发者ID:CCSUZJJ,项目名称:Cascade-CNN-Face-Detection,代码行数:59,代码来源:cv.py

示例9: backprop

 def backprop(self, A_in, Z_out, prev_delta, prev_params):
     f = GRADFNS[self.modelfn]
     num_pts = np.shape(Z_out)[0]
     bias_ones = np.ones((num_pts, 1))
     sgrd = f(np.hstack([bias_ones, Z_out]))
     delta = np.dot(prev_params.T, prev_delta) * sgrd.T
     grad = np.dot(delta[1:,:], np.hstack([bias_ones, A_in])) / num_pts
     return grad, delta
开发者ID:ageek,项目名称:sandbox,代码行数:8,代码来源:neurallayer.py

示例10: funky

def funky():
    x0 = sp.array([0.25, 0.3, 0.5, 0.6, 0.6])
    y0 = sp.array([0.2, 0.35, 0.0, 0.25, 0.65])
    tx = 0.46
    ty = 0.23
    t0 = Triangulation(x0, y0)
    t1 = Triangulation(sp.hstack((x0, [tx])), sp.hstack((y0, [ty])))
    return t0, t1
开发者ID:jmsole-METEOSIM,项目名称:pyroms,代码行数:8,代码来源:testfuncs.py

示例11: pdist

def pdist(X,idx,q):
 N = len(X)
 p = scipy.zeros((N,N))
 for i in idx:
  for j in scipy.arange(i,N):
   if i != j:
    p[i,j] = dist(X[i],X[j])
  q.put(scipy.hstack((i,p[i]))) 	  
 q.put(scipy.hstack((-1,scipy.zeros(N)))) 
开发者ID:mmssouza,项目名称:dii_cbir,代码行数:9,代码来源:pdist_mt.py

示例12: make_data_xor

def make_data_xor(N=80,noise=.25):
    # generates some toy data
    mu = sp.array([[-1,1],[1,1]]).T
    C = sp.eye(2)*noise
    X = sp.hstack((mvn(mu[:,0],C,N/4).T,mvn(-mu[:,0],C,N/4).T, mvn(mu[:,1],C,N/4).T,mvn(-mu[:,1],C,N/4).T))
    Y = sp.hstack((sp.ones((1,N/2.)),-sp.ones((1,N/2.))))
    randidx = sp.random.permutation(N)
    Y = Y[0,randidx]
    X = X[:,randidx]
    return X,Y
开发者ID:nikste,项目名称:doubly_random_svm,代码行数:10,代码来源:training_comparison_functions.py

示例13: stripe2

def stripe2():
    Y1 = sp.vstack((sp.ones((50,1)), sp.zeros((50,1))))
    Y2 = sp.vstack((sp.zeros((50,1)), sp.ones((50,1))))
    Y = sp.hstack([Y1, Y2])

    X1 = sp.random.multivariate_normal([-2,2], [[1,.8],[.8,1]],size=50)
    X2 = sp.random.multivariate_normal([2,-1], [[1,.8],[.8,1]], size=50)
    X = sp.hstack((sp.ones((100,1)),sp.vstack([X1,X2])))

    return Y, X
开发者ID:ayr0,项目名称:StatLab,代码行数:10,代码来源:regressBayes.py

示例14: plot

def plot(i,zz):
    plt.figure(i, figsize=(10,10))
    plt.plot(sp.hstack((quad_x,quad_x[0])),sp.hstack((quad_y,quad_y[0])), '-g')
    plt.plot(quad_x[0],quad_y[0], 'ro')
    plt.axis('equal')
    plt.grid('on')
    plt.xlim((9,12))
    plt.ylim((9,12))
    #plt.contourf(x_samples,y_samples,z_samples,100, interpolation=None)
    plt.contourf(x_samples,y_samples,abs(zz),100, interpolation=None)
    plt.colorbar()
开发者ID:MatejKosec,项目名称:LUTStandAlone,代码行数:11,代码来源:InterpolationAndSkewness.py

示例15: draw_support_inplane

def draw_support_inplane(g, lb, ub, n, method, axis, value, para=1.0):
    print "dsinplane axis:{} value:{}".format(axis, value)

    if type(g) is int:
        gf = g - 1
    else:
        gf = gpfake(g, axis, value)

    lb_red = sp.hstack([lb[:axis], lb[axis + 1 :]])
    ub_red = sp.hstack([ub[:axis], ub[axis + 1 :]])
    X = draw_support(gf, lb_red, ub_red, n, method, para=para)
    return sp.hstack([X[:, :axis], sp.ones([n, 1]) * value, X[:, axis:]])
开发者ID:markm541374,项目名称:GPc,代码行数:12,代码来源:ESutils.py


注:本文中的scipy.hstack函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。