当前位置: 首页>>代码示例>>Python>>正文


Python scipy.atleast_2d函数代码示例

本文整理汇总了Python中scipy.atleast_2d函数的典型用法代码示例。如果您正苦于以下问题:Python atleast_2d函数的具体用法?Python atleast_2d怎么用?Python atleast_2d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了atleast_2d函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: intercept

    def intercept(self, ray):
        """Solves for intersection point of surface and a ray or Beam
    
        Args:
            ray: Ray or Beam object
                It must be in the same coordinate space as the surface object.
            
        Returns:
            s: value of s [meters] which intercepts along norm, otherwise an
            empty tuple (for no intersection).
        
        Examples:
            Accepts all point and point-derived object inputs, though all data 
            is stored as a python object.

            Generate an y direction Ray in cartesian coords using a Vec from (0,0,1)::
            
                    cen = geometry.Center(flag=True)
                    ydir = geometry.Vecx((0,1,0))
                    zpt = geometry.Point((0,0,1),cen)

        """


        # Proceedure will be to generate 
        if self._origin is ray._origin:
            try:
                rcopy = ray.copy()
                rcopy.redefine(self)
                
                intersect = _beam.interceptCyl(scipy.atleast_2d(rcopy.x()[:,-1]), 
                                               scipy.atleast_2d(rcopy.norm.unit), 
                                               scipy.array([self.sagi.s,self.sagi.s]),
                                               scipy.array([-self.norm.s,self.norm.s])) + rcopy.norm.s[-1]
                
                if not scipy.isfinite(intersect):
                    #relies on r1 using arctan2 so that it sets the branch cut properly (-pi,pi]
                    return None
                elif self.edgetest(intersect, (rcopy(intersect)).r1()):
                        return intersect
                else:
                    rcopy.norm.s[-1] = intersect
                    intersect = _beam.interceptCyl(scipy.atleast_2d(rcopy.x()[:,-1]), 
                                                   scipy.atleast_2d(rcopy.norm.unit), 
                                                   scipy.array([self.sagi.s,self.sagi.s]),
                                                   scipy.array([-self.norm.s,self.norm.s])) + rcopy.norm.s[-1]
                    if not scipy.isfinite(intersect):
                        #relies on r1 using arctan2 so that it sets the branch cut properly (-pi,pi]
                        return None
                    elif self.edgetest(intersect, (rcopy(intersect)).r1()):
                        return None
                    else:
                        return None

            except AttributeError:
                raise ValueError('not a surface object')
        else:           
            raise ValueError('not in same coordinate system, use redefine and try again')
开发者ID:icfaust,项目名称:TRIPPy,代码行数:58,代码来源:surface.py

示例2: __call__

 def __call__(self, X, n):
     n = scipy.atleast_2d(scipy.asarray(n, dtype=int))
     X = scipy.atleast_2d(scipy.asarray(X))
     n_unique = unique_rows(n)
     mu = scipy.zeros(X.shape[0])
     for nn in n_unique:
         idxs = (n == nn).all(axis=1)
         mu[idxs] = self.fun(X[idxs, :], nn, *self.params)
     
     return mu
开发者ID:leconteur,项目名称:gptools,代码行数:10,代码来源:mean.py

示例3: topterms

	def topterms(self,n_terms=10):
		""" This function is given. """
		vec = sp.atleast_2d(sp.arange(0,self.n_words))
		topics = []
		for k in xrange(self.n_topics):
			probs = sp.atleast_2d(self._phi[k,:])
			mat = sp.append(probs,vec,0)
			sind = sp.array([mat[:,i] for i in sp.argsort(mat[0])]).T
			topics.append([self.vocab[int(sind[1,self.n_words - 1 - i])] for i in xrange(n_terms)])
		return topics
开发者ID:KathleenF,项目名称:numerical_computing,代码行数:10,代码来源:studentlda.py

示例4: worker_quality

def worker_quality(predictions, num_classes):
    predictions = sp.atleast_2d(predictions)
    num_workers, num_objects = predictions.shape

    error_rates = sp.zeros((num_workers, num_classes, num_classes))
    diy, diz = sp.diag_indices(num_classes)
    error_rates[:, diy, diz] = 1

    while True:
        # E step
        new_predictions = sp.zeros((num_objects, num_classes))
        for i in xrange(num_objects):
            individual_predictions = predictions[:, i]
            individual_error_rates = error_rates[range(num_workers), individual_predictions, individual_predictions]
            new_predictions[i, :] = sp.bincount(individual_predictions, individual_error_rates, minlength=num_classes)

        correct_labels = sp.argmax(new_predictions, axis=1)
        count_per_label = sp.bincount(correct_labels)

        # M step
        new_error_rates = sp.zeros((num_workers, num_classes, num_classes))
        for i, label in enumerate(correct_labels):
            new_error_rates[range(num_workers), label, predictions[:, i]] += 1

        for i in xrange(num_classes):
            new_error_rates[:, :, i] /= count_per_label

        diff_error_rates = sp.absolute(new_error_rates - error_rates)
        error_rates = new_error_rates

        if sp.amax(diff_error_rates) < 0.001:
            break


    # calculate the cost of each worker
    class_priors = sp.bincount(correct_labels, minlength=num_classes) / float(num_objects)
    costs = []
    for k in xrange(num_workers):
        worker_class_priors = sp.dot(sp.atleast_2d(class_priors), error_rates[k])[0] + 0.0000001

        cost = 0
        for j in xrange(num_classes):
            soft_label = error_rates[k, :, j] * class_priors / worker_class_priors[j]

            soft_label_cost = 0.0
            for i in xrange(num_classes):
                soft_label_cost += sp.sum(soft_label[i] * soft_label)
            soft_label_cost -= sp.sum(soft_label ** 2) # subtract the diagonal entries (those costs = 0)
            cost += soft_label_cost * worker_class_priors[j]

        costs.append(cost)

    return error_rates, correct_labels, costs
开发者ID:woohp,项目名称:ai_tidbits,代码行数:53,代码来源:worker_quality_estimate.py

示例5: vec2ten

def vec2ten(data, nchan=4):
    """converts from templates/spikes that are concatenated across the
    channels to tensors that have an extra dim for the channels

    :type data: ndarray
    :param data: input array [templates][vars * channels]
    :type nchan: int
    :param nchan: count of channels
        Default=4
    :returns: ndarray - data converted to tensor [templates][vars][channels]
    """

    if data.ndim == 1:
        data = sp.atleast_2d(data)
    n, dim = data.shape

    if dim % nchan != 0:
        raise ValueError(
            'dim %s nchan != 0 !! dim=%s, nchan=%s' % (dim, nchan))
    tf = dim / nchan

    rval = sp.zeros((n, tf, nchan), data.dtype)

    for i in xrange(n):
        for c in xrange(nchan):
            rval[i, :, c] = data[i, c * tf:(c + 1) * tf]
    return rval
开发者ID:pmeier82,项目名称:BOTMpy,代码行数:27,代码来源:funcs_general.py

示例6: nullspace

def nullspace(A, atol=1e-13, rtol=0):
    '''Compute an approximate basis for the nullspace of A.
    The algorithm used by this function is based on the singular value
    decomposition of `A`. This implementation was copied
    from the scipy cookbook: http://www.scipy.org/Cookbook/RankNullspace

    @param A: ndarray
        A should be at most 2-D.  A 1-D array with length k will be treated
        as a 2-D with shape (1, k)
    @param atol : float
        The absolute tolerance for a zero singular value.  Singular values
        smaller than `atol` are considered to be zero.
    @param rtol : float
        The relative tolerance.  Singular values less than rtol*smax are
        considered to be zero, where smax is the largest singular value.

    @note: If both `atol` and `rtol` are positive, the combined tolerance is the
    maximum of the two; that is::
        tol = max(atol, rtol * smax)
    Singular values smaller than `tol` are considered to be zero.

    @return: ns ndarray
        If `A` is an array with shape (m, k), then `ns` will be an array
        with shape (k, n), where n is the estimated dimension of the
        nullspace of `A`.  The columns of `ns` are a basis for the
        nullspace; each element in numpy.dot(A, ns) will be approximately
        zero.
    '''

    A = sp.atleast_2d(A)
    _u, s, vh = LA.svd(A)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T
    return ns
开发者ID:svohara,项目名称:svo_util,代码行数:35,代码来源:linearalg.py

示例7: sinc_interp1d

def sinc_interp1d(x, s, r):
    """Interpolates `x`, sampled at times `s`
    Output `y` is sampled at times `r`

    inspired from from Matlab:
    http://phaseportrait.blogspot.com/2008/06/sinc-interpolation-in-matlab.html

    :param ndarray x: input data time series
    :param ndarray s: input sampling time series (regular sample interval)
    :param ndarray r: output sampling time series
    :return ndarray: output data time series (regular sample interval)
    """

    # init
    s = sp.asarray(s)
    r = sp.asarray(r)
    x = sp.asarray(x)
    if x.ndim == 1:
        x = sp.atleast_2d(x)
    else:
        if x.shape[0] == len(s):
            x = x.T
        else:
            if x.shape[1] != s.shape[0]:
                raise ValueError('x and s must be same temporal extend')
    if sp.allclose(s, r):
        return x.T
    T = s[1] - s[0]

    # resample
    sincM = sp.tile(r, (len(s), 1)) - sp.tile(s[:, sp.newaxis], (1, len(r)))
    return sp.vstack([sp.dot(xx, sp.sinc(sincM / T)) for xx in x]).T
开发者ID:pmeier82,项目名称:BOTMpy,代码行数:32,代码来源:spike_alignment.py

示例8: reconstruct

    def reconstruct(self, X):
        n_features = sp.atleast_2d(X).shape[1]
        latent = sp.dot(self.inv_M, sp.dot(self.weight.T, (X - self.predict_mean).T))
        eps = sprd.multivariate_normal(sp.zeros(n_features), self.sigma2 * sp.eye(n_features))
        recons = sp.dot(self.weight, latent) + self.predict_mean + eps

        return recons
开发者ID:Yevgnen,项目名称:prml,代码行数:7,代码来源:pca.py

示例9: phigprov

    def phigprov(self, Pp, Pg, theta):
        """ Calculate transition probabilities

        Parameters
        ------------
        Pp : ndarray, shape (n, k)
             Conditional choice probabilities for provinces
        Pg : ndarray, shape (n, 2 k)
             Conditional choice probabilities for the government
        theta : ndarray, shape (5, )
             Parameters

        Returns
        ---------
        V : ndarray
            Observable state values

        Notes
        -----------

        Takes conditional choice probabilities :math:`P` and :math:`\theta`
        as an input and returns values :math:`V^P`.
        This is the mapping :math:`\Phi` in part (b) of the assignment.

        This is a wrapper for the matlab function **Phigprov**.
        
        """
        theta = sp.atleast_2d(theta)
        return pytave.feval(1, "Phigprov", Pp, Pg, theta, self.model())[0]
开发者ID:jrnold,项目名称:psc585,代码行数:29,代码来源:ps4.py

示例10: plot_filter_set

    def plot_filter_set(self, ph=None, show=False):
        """plot the filter set in a waveform plot"""

        # get plotting tools
        try:
            from spikeplot import waveforms
        except ImportError:
            return None

        # checks
        if self.nf == 0:
            warnings.warn("skipping plot, no active units!")
            return None

        # init
        units = {}
        for k in self._idx_active_set:
            units[k] = sp.atleast_2d(self.bank[k].f_conc)

        return waveforms(
            units,
            tf=self._tf,
            plot_separate=True,
            plot_mean=False,
            plot_single_waveforms=False,
            plot_handle=ph,
            show=show,
        )
开发者ID:rproepp,项目名称:BOTMpy,代码行数:28,代码来源:filter_bank.py

示例11: new_p

    def new_p(self, Pp, Pg, theta):
        """ Calculate transition probabilities

        Parameters
        --------------
        
        Pp : ndarray, shape (n, k)
             Conditional choice probabilities for provinces
        Pg : ndarray, shape (n, 2 k)
             Conditional choice probabilities for the government
        theta : ndarray, shape (5, )
             Parameters

        Returns
        ---------
        Pp : ndarray, shape (n, k)
             New conditional choice probabilities for provinces
        Pg : ndarray, shape (n, 2 k)
             New conditional choice probabilities for the government

        Notes
        -----------

        Takes conditional choice probabilities :math:`P` and :math:`\theta`
        as an input and returns new conditional choice values.
        This is the mapping :math:`\Psi` in part (c) of the assignment.

        This is a wrapper for the matlab function **NewP**.
        
        """
        theta = sp.atleast_2d(theta)
        return pytave.feval(2, "NewP", Pp, Pg, theta, self.model())
开发者ID:jrnold,项目名称:psc585,代码行数:32,代码来源:ps4.py

示例12: chunk_data

def chunk_data(data, epochs=None, invert=False):
    """returns a generator of chunks from data given epochs

    :type data: ndarray
    :param data: signal data [[samples, channels]]
    :type epochs: ndarray
    :param epochs: epoch set, positive mask
    :type invert: bool
    :param invert: invert epochs, negative mask instead of positive mask
    :returns: generator - data chunks as per :epochs:
    """

    # checks
    data = sp.asarray(data)
    if data.ndim != 2:
        data = sp.atleast_2d(data).T
    if epochs is not None:
        if epochs.ndim != 2:
            raise ValueError("epochs has to be ndim=2 like [[start,end]]")
    if invert is True and epochs is not None:
        epochs = invert_epochs(epochs, end=data.shape[0])
    if epochs is None or len(epochs) == 0:
        epochs = [[0, data.shape[0]]]

    # yield data chunks
    for ep in epochs:
        yield data[ep[0] : ep[1], :], list(ep)
开发者ID:rproepp,项目名称:BOTMpy,代码行数:27,代码来源:funcs_spike.py

示例13: summed_dist_matrix

    def summed_dist_matrix(self, vectors, presorted=False):
        """ Calculates the sum of all element pair distances for each
        pair of vectors.

        If :math:`(a_1, \\dots, a_n)` and :math:`(b_1, \\dots, b_m)` are the
        :math:`u`-th and :math:`v`-th vector from `vectors` and :math:`K` the
        kernel, the resulting entry in the 2D array will be :math:`D_{uv}
        = \\sum_{i=1}^{n} \\sum_{j=1}^{m} K(a_i - b_j)`.

        :param sequence vectors: A sequence of Quantity 1D to calculate the
            summed distances for each pair. The required units depend on the
            kernel. Usually it will be the inverse unit of the kernel size.
        :param bool presorted: Some optimized specializations of this function
            may need sorted vectors. Set `presorted` to `True` if you know that
            the passed vectors are already sorted to skip the sorting and thus
            increase performance.
        :rtype: Quantity 2D
        """

        D = sp.empty((len(vectors), len(vectors)))
        if len(vectors) > 0:
            might_have_units = self(vectors[0])
            if hasattr(might_have_units, 'units'):
                D = D * might_have_units.units
            else:
                D = D * pq.dimensionless

        for i, j in sp.ndindex(len(vectors), len(vectors)):
            D[i, j] = sp.sum(self(
                (vectors[i] - sp.atleast_2d(vectors[j]).T).flatten()))
        return D
开发者ID:NeuroArchive,项目名称:spykeutils,代码行数:31,代码来源:signal_processing.py

示例14: signal

def signal(signal, events=None, epochs=None, spike_trains=None,
                spike_waveforms=None):
    """ Create a plot from an AnalogSignal.

    :param AnalogSignal signal: The signal to plot.
    :param sequence events: A list of Event objects to be included in the
        plot.
    :param sequence epochs: A list of Epoch objects to be included in the
        plot.
    :param dict spike_trains: A dictionary of SpikeTrain objects to be
        included in the plot. Spikes are plotted as vertical lines.
        Indices of the dictionary (typically Unit objects) are used
        for color and legend entries.
    :param sequence spike_waveforms: A dictionary of lists of Spike objects
        to be included in the plot. Waveforms of spikes are overlaid on
        the signal. Indices of the dictionary (typically Unit objects) are
        used for color and legend entries.
    """
    # Plot title
    win_title = 'Analog Signal'
    if signal.recordingchannel:
        win_title += ' | Recording Channel: %s' % \
                     signal.recordingchannel.name
    if signal.segment:
        win_title += ' | Segment: %s' % signal.segment.name
    win = PlotDialog(toolbar=True, wintitle=win_title)

    signalarray = neo.AnalogSignalArray(sp.atleast_2d(sp.asarray(signal)).T,
        units=signal.units, sampling_rate=signal.sampling_rate)

    _plot_signal_array_on_window(win, signalarray, events, epochs,
        spike_trains, spike_waveforms, False)
开发者ID:neurodebian,项目名称:spykeutils,代码行数:32,代码来源:analog_signals.py

示例15: _stop_training

 def _stop_training(self, *args, **kwargs):
     # produce data in one piece
     self.data = sp.vstack(self.data)
     # calculate energy
     self.energy = self._energy_func(self.data)
     if self.energy.ndim == 1:
         self.energy = sp.atleast_2d(self.energy).T
     self.size, self.nchan = self.energy.shape
开发者ID:rproepp,项目名称:BOTMpy,代码行数:8,代码来源:spike_detection.py


注:本文中的scipy.atleast_2d函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。