当前位置: 首页>>代码示例>>Python>>正文


Python api.add_constant函数代码示例

本文整理汇总了Python中scikits.statsmodels.api.add_constant函数的典型用法代码示例。如果您正苦于以下问题:Python add_constant函数的具体用法?Python add_constant怎么用?Python add_constant使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了add_constant函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: age_design

def age_design(indices):
  tmp = np.hstack((sm.categorical(hrdat['sex'][indices])[:,2:],
                  sm.categorical(hrdat['educ'][indices])[:,2:],
                  sm.categorical(hrdat['PTFT'][indices])[:,2:],
                  hrdat['age'].reshape(n,1)[indices,:],
                  (hrdat['age']**2).reshape(n,1)[indices,:]))
  return sm.add_constant(tmp, prepend = True)
开发者ID:along1x,项目名称:r_vs_py,代码行数:7,代码来源:py_stats_analysis.py

示例2: checkOLS

    def checkOLS(self, exog, endog, x, y):

        try:
            import scikits.statsmodels.api as sm
        except ImportError:
            import scikits.statsmodels as sm

        reference = sm.OLS(endog, sm.add_constant(exog)).fit()

        result = ols(y=y, x=x)

        assert_almost_equal(reference.params, result._beta_raw)
        assert_almost_equal(reference.df_model, result._df_model_raw)
        assert_almost_equal(reference.df_resid, result._df_resid_raw)
        assert_almost_equal(reference.fvalue, result._f_stat_raw[0])
        assert_almost_equal(reference.pvalues, result._p_value_raw)
        assert_almost_equal(reference.rsquared, result._r2_raw)
        assert_almost_equal(reference.rsquared_adj, result._r2_adj_raw)
        assert_almost_equal(reference.resid, result._resid_raw)
        assert_almost_equal(reference.bse, result._std_err_raw)
        assert_almost_equal(reference.t(), result._t_stat_raw)
        assert_almost_equal(reference.cov_params(), result._var_beta_raw)
        assert_almost_equal(reference.fittedvalues, result._y_fitted_raw)

        _check_non_raw_results(result)
开发者ID:choketsu,项目名称:pandas,代码行数:25,代码来源:test_ols.py

示例3: test_HC_use

def test_HC_use():
    np.random.seed(0)
    nsample = 100
    x = np.linspace(0,10, 100)
    X = sm.add_constant(np.column_stack((x, x**2)), prepend=False)
    beta = np.array([1, 0.1, 10])
    y = np.dot(X, beta) + np.random.normal(size=nsample)

    results = sm.OLS(y, X).fit()

    #test cov_params
    idx = np.array([1,2])
    #need to call HC0_se to have cov_HC0 available
    results.HC0_se
    cov12 = results.cov_params(column=[1,2], cov_p=results.cov_HC0)
    assert_almost_equal(cov12, results.cov_HC0[idx[:,None], idx], decimal=15)

    #test t_test
    tvals = results.params/results.HC0_se
    ttest = results.t_test(np.eye(3), cov_p=results.cov_HC0)
    assert_almost_equal(ttest.tvalue, tvals, decimal=14)
    assert_almost_equal(ttest.sd, results.HC0_se, decimal=14)

    #test f_test
    ftest = results.f_test(np.eye(3)[:-1], cov_p=results.cov_HC0)
    slopes = results.params[:-1]
    idx = np.array([0,1])
    cov_slopes = results.cov_HC0[idx[:,None], idx]
    fval = np.dot(slopes, np.linalg.inv(cov_slopes).dot(slopes))/len(idx)
    assert_almost_equal(ftest.fvalue, fval, decimal=12)
开发者ID:takluyver,项目名称:statsmodels,代码行数:30,代码来源:test_cov.py

示例4: setupClass

 def setupClass(cls):
     data = sm.datasets.spector.load()
     data.exog = sm.add_constant(data.exog)
     res2 = Spector()
     res2.probit()
     cls.res2 = res2
     cls.res1 = Probit(data.endog, data.exog).fit(method="ncg", disp=0, avextol=1e-8)
开发者ID:katherineranney,项目名称:statsmodels,代码行数:7,代码来源:test_discrete.py

示例5: __init__

    def __init__(self):

        # generate artificial data
        np.random.seed(98765678)
        nobs = 200
        rvs = np.random.randn(nobs,6)
        data_exog = rvs
        data_exog = sm.add_constant(data_exog)
        xbeta = 1 + 0.1*rvs.sum(1)
        data_endog = np.random.poisson(np.exp(xbeta))

        #estimate discretemod.Poisson as benchmark
        self.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)

        mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
        self.res_glm = mod_glm.fit()

        #estimate generic MLE
        #self.mod = PoissonGMLE(data_endog, data_exog)
        #res = self.mod.fit()
        offset = self.res_discrete.params[0] * data_exog[:,0]  #1d ???
        #self.res = PoissonOffsetGMLE(data_endog, data_exog[:,1:], offset=offset).fit(start_params = np.ones(6)/2., method='nm')
        modo = PoissonOffsetGMLE(data_endog, data_exog[:,1:], offset=offset)
        self.res = modo.fit(start_params = 0.9*self.res_discrete.params[1:],
                            method='nm', disp=0)
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:25,代码来源:test_poisson.py

示例6: setupClass

 def setupClass(cls):
     data = sm.datasets.spector.load()
     data.exog = sm.add_constant(data.exog)
     cls.res1 = Logit(data.endog, data.exog).fit(method="newton", disp=0)
     res2 = Spector()
     res2.logit()
     cls.res2 = res2
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:7,代码来源:test_discrete.py

示例7: __init__

 def __init__(self):
     data = sm.datasets.spector.load()
     data.exog = sm.add_constant(data.exog)
     #mod = sm.Probit(data.endog, data.exog)
     self.mod = sm.Logit(data.endog, data.exog)
     #res = mod.fit(method="newton")
     self.params = [np.array([1,0.25,1.4,-7])]
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:7,代码来源:test_numdiff.py

示例8: test_qqplot

 def test_qqplot(self):
   #just test that it runs
   data = sm.datasets.longley.load()
   data.exog = sm.add_constant(data.exog)
   mod_fit = sm.OLS(data.endog, data.exog).fit()
   res = mod_fit.resid
   fig = sm.qqplot(res)
   plt.close(fig)
开发者ID:smc77,项目名称:statsmodels,代码行数:8,代码来源:test_regressionplots.py

示例9: run_WLS

def run_WLS():
    import scikits.statsmodels.api as sm
    res = sm.WLS(y, sm.add_constant(x, prepend=True),
                 weights=1. / sigma ** 2).fit()
    print ('statsmodels.api.WLS')
    print('popt: {0}'.format(res.params))
    print('perr: {0}'.format(res.bse))
    return res
开发者ID:pyfit,项目名称:pyfit,代码行数:8,代码来源:chi2_example.py

示例10: quadratic_term

def quadratic_term(list_of_mean, list_of_var):
    """Fit a quadratic term and return its p-value"""
    # Remove records with 0 variance
    log_var = [np.log(x) for x in list_of_var if x > 0]
    log_mean = [np.log(list_of_mean[i]) for i in range(len(list_of_mean)) if list_of_var[i] > 0]
    log_mean_quad = [x ** 2 for x in log_mean]
    indep_var = np.column_stack((log_mean, log_mean_quad))
    indep_var = sm.add_constant(indep_var, prepend = True)
    quad_res = sm.OLS(log_var, indep_var).fit()
    return quad_res.pvalues[2]
开发者ID:ethanwhite,项目名称:TL,代码行数:10,代码来源:TL_functions.py

示例11: age_design

def age_design(indices):
    tmp = np.hstack(
        (
            sm.categorical(hrdat["sex"][indices])[:, 2:],
            sm.categorical(hrdat["educ"][indices])[:, 2:],
            sm.categorical(hrdat["PTFT"][indices])[:, 2:],
            hrdat["age"].reshape(n, 1)[indices, :],
            (hrdat["age"] ** 2).reshape(n, 1)[indices, :],
        )
    )
    return sm.add_constant(tmp, prepend=True)
开发者ID:flashus,项目名称:r_vs_py,代码行数:11,代码来源:py_stats_analysis.py

示例12: explain_rseq_by_rfreq_and_copy

def explain_rseq_by_rfreq_and_copy():
    r_rseqs = [motif_ic(getattr(Escherichia_coli,tf)) for tf in Escherichia_coli.tfs
               if tf in copy_numbers]
    r_rfreqs = [log2(4.6*10**6/len(getattr(Escherichia_coli,tf)))
          for tf in Escherichia_coli.tfs
                if tf in copy_numbers]
    copies = [copy_numbers[tf] for tf in Escherichia_coli.tfs if tf in copy_numbers]
    log_copies = map(log2,copies)
    X = sm.add_constant(np.column_stack((r_rfreqs,log_copies)),prepend=True)
    res = sm.OLS(r_rseqs,X).fit()
    print res.summary()
开发者ID:poneill,项目名称:motifs,代码行数:11,代码来源:rfreq_vs_rseq.py

示例13: test_perfect_prediction

def test_perfect_prediction():
    cur_dir = os.path.dirname(os.path.abspath(__file__))
    iris_dir = os.path.join(cur_dir, "..", "..", "genmod", "tests", "results")
    iris_dir = os.path.abspath(iris_dir)
    iris = np.genfromtxt(os.path.join(iris_dir, "iris.csv"), delimiter=",", skip_header=1)
    y = iris[:, -1]
    X = iris[:, :-1]
    X = X[y != 2]
    y = y[y != 2]
    X = sm.add_constant(X, prepend=True)
    mod = Logit(y, X)
    assert_raises(PerfectSeparationError, mod.fit)
开发者ID:katherineranney,项目名称:statsmodels,代码行数:12,代码来源:test_discrete.py

示例14: cm_test

def cm_test(X):
    """
    Conditional moment test.  X is a flat numpy array.
    """
    betahat, alphahat, shat = ar1_functions.fit(X)
    n = len(X)
    xL = X[:(n-1)]  #  All but the last one
    xF = X[1:]      #  All but the first one
    Z = (xF - betahat - alphahat * xL)**2 
    XX = sm.add_constant(xL)
    out = sm.OLS(Z, XX).fit()
    return np.abs(out.tvalues[0]) > 1.96
开发者ID:jstac,项目名称:lae_test,代码行数:12,代码来源:cond_moment.py

示例15: setup

    def setup(self):
        nsample = 100
        sig = 0.5
        x1 = np.linspace(0, 20, nsample)
        x2 = 5 + 3* np.random.randn(nsample)
        X = np.c_[x1, x2, np.sin(0.5*x1), (x2-5)**2, np.ones(nsample)]
        beta = [0.5, 0.5, 1, -0.04, 5.]
        y_true = np.dot(X, beta)
        y = y_true + sig * np.random.normal(size=nsample)
        exog0 = sm.add_constant(np.c_[x1, x2], prepend=False)
        res = sm.OLS(y, exog0).fit()

        self.res = res
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:13,代码来源:test_regressionplots.py


注:本文中的scikits.statsmodels.api.add_constant函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。