本文整理汇总了Python中scikits.learn.datasets.load_iris函数的典型用法代码示例。如果您正苦于以下问题:Python load_iris函数的具体用法?Python load_iris怎么用?Python load_iris使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_iris函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self):
import pdb; pdb.set_trace()
self.x = datasets.load_iris()['data']
self.y = datasets.load_iris()['target']
indices = []
示例2: main
def main():
# load Iris dataset
data = datasets.load_iris()
X = data['data']
# cluster and compute silhouette score
K = 8
C, cIDX = kmeans2(X, K)
print cIDX
D = pairwise_distances(X, metric='euclidean')
s = silhouette_coefficient(cIDX,D)
silhouette = silhouette_score(D, y, metric='precomputed')
# plot
order = np.lexsort((-s,cIDX))
indices = [np.flatnonzero(cIDX[order]==k) for k in range(K)]
ytick = [(np.max(ind)+np.min(ind))/2 for ind in indices]
ytickLabels = ["%d" % x for x in range(K)]
cmap = cm.jet( np.linspace(0,1,K) ).tolist()
clr = [cmap[i] for i in cIDX[order]]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.barh(range(X.shape[0]), s[order], height=1.0,
edgecolor='none', color=clr)
ax.set_ylim(ax.get_ylim()[::-1])
plt.yticks(ytick, ytickLabels)
plt.xlabel('Silhouette Value')
plt.ylabel('Cluster')
plt.show()
示例3: test_pipeline
def test_pipeline():
# check that Isomap works fine as a transformer in a Pipeline
iris = datasets.load_iris()
clf = pipeline.Pipeline(
[('isomap', manifold.Isomap()),
('neighbors_clf', neighbors.NeighborsClassifier())])
clf.fit(iris.data, iris.target)
assert_lower(.7, clf.score(iris.data, iris.target))
示例4: test_pipeline
def test_pipeline():
# check that LocallyLinearEmbedding works fine as a Pipeline
from scikits.learn import pipeline, datasets
iris = datasets.load_iris()
clf = pipeline.Pipeline(
[('filter', manifold.LocallyLinearEmbedding()),
('clf', neighbors.NeighborsClassifier())])
clf.fit(iris.data, iris.target)
assert clf.score(iris.data, iris.target) > .7
示例5: test_SVC_iris
def test_SVC_iris():
"""Test the sparse SVC with the iris dataset"""
iris = datasets.load_iris()
sp_clf = sparse.svm.SVC(kernel='linear').fit(iris.data, iris.target)
clf = svm.SVC(kernel='linear').fit(iris.data, iris.target)
assert_array_almost_equal(clf.support_, sp_clf.support_.todense())
assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.todense())
assert_array_almost_equal(clf.coef_, sp_clf.coef_.todense())
assert_array_almost_equal(clf.predict(iris.data), sp_clf.predict(iris.data))
示例6: test_LinearSVC_iris
def test_LinearSVC_iris():
"""Test the sparse LinearSVC with the iris dataset"""
iris = datasets.load_iris()
sp_clf = svm.sparse.LinearSVC().fit(iris.data, iris.target)
clf = svm.LinearSVC().fit(iris.data, iris.target)
assert_array_almost_equal(clf.label_, sp_clf.label_)
assert_equal (clf.fit_intercept, sp_clf.fit_intercept)
assert_array_almost_equal(clf.raw_coef_, sp_clf.raw_coef_, decimal=1)
assert_array_almost_equal(clf.predict(iris.data), sp_clf.predict(iris.data))
示例7: test_precomputed
def test_precomputed():
"""
SVC with a precomputed kernel.
We test it with a toy dataset and with iris.
"""
clf = svm.SVC(kernel='precomputed')
# we use just a linear kernel
K = np.dot(X, np.array(X).T)
clf.fit(K, Y)
# KT is the Gram matrix
KT = np.dot(T, np.array(X).T)
pred = clf.predict(KT)
assert_array_equal(clf.dual_coef_, [[0.25, -.25]])
assert_array_equal(clf.intercept_, [0])
assert_array_almost_equal(clf.support_, [[2], [4]])
assert_array_equal(pred, true_result)
# same as before, but using a callable function instead of the kernel
# matrix. kernel is just a linear kernel
kfunc = lambda x, y: np.dot(x, y.T)
clf = svm.SVC(kernel=kfunc)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_equal(clf.dual_coef_, [[0.25, -.25]])
assert_array_equal(clf.intercept_, [0])
assert_array_almost_equal(clf.support_, [[2], [4]])
assert_array_equal(pred, true_result)
# test a precomputed kernel with the iris dataset
clf = svm.SVC(kernel='precomputed')
iris = datasets.load_iris()
K = np.dot(iris.data, iris.data.T)
clf.fit(K, iris.target)
pred = clf.predict(K)
assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2)
clf = svm.SVC(kernel=kfunc)
clf.fit(iris.data, iris.target)
assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2)
示例8: test_probability
def test_probability():
"""
Predict probabilities using SVC
This uses cross validation, so we use a slightly bigger testing set.
"""
from scikits.learn import datasets
iris = datasets.load_iris()
clf = svm.SVC(probability=True)
clf.fit(iris.data, iris.target)
# predict on a simple dataset
T = [[0, 0, 0, 0],
[2, 2, 2, 2]]
assert_array_almost_equal(clf.predict_proba(T),
[[ 0.993, 0.003, 0.002],
[ 0.740, 0.223 , 0.035]],
decimal=2)
# make sure probabilities sum to one
pprob = clf.predict_proba(X)
assert_array_almost_equal(pprob.sum(axis=1),
np.ones(len(X)))
示例9: range
import random
import numpy as np
from scikits.learn import svm, datasets
from scikits.learn.metrics import roc, auc, precision_recall, \
confusion_matrix, zero_one, explained_variance, \
mean_square_error
from numpy.testing import assert_array_equal, \
assert_array_almost_equal, \
assert_equal, assert_almost_equal
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y!=2], y[y!=2]
n_samples, n_features = X.shape
p = range(n_samples)
random.seed(0)
random.shuffle(p)
X, y = X[p], y[p]
half = int(n_samples/2)
# Add noisy features
np.random.seed(0)
X = np.c_[X,np.random.randn(n_samples, 200*n_features)]
# Run classifier
classifier = svm.SVC(kernel='linear', probability=True)
probas_ = classifier.fit(X[:half],y[:half]).predict_proba(X[half:])
y_ = classifier.predict(X[half:])
示例10: load_iris
"""
print __doc__
from scipy import linalg
import numpy as np
import pylab as pl
import matplotlib as mpl
from scikits.learn.lda import LDA
from scikits.learn.qda import QDA
################################################################################
# load sample dataset
from scikits.learn.datasets import load_iris
iris = load_iris()
X = iris.data[:,:2] # Take only 2 dimensions
y = iris.target
X = X[y > 0]
y = y[y > 0]
y -= 1
target_names = iris.target_names[1:]
################################################################################
# LDA
lda = LDA()
y_pred = lda.fit(X, y, store_covariance=True).predict(X)
# QDA
qda = QDA()
y_pred = qda.fit(X, y, store_covariances=True).predict(X)
示例11: test_covariance
# Author: Alexandre Gramfort <[email protected]>
# Gael Varoquaux <[email protected]>
# Virgile Fritsch <[email protected]>
#
# License: BSD Style.
from numpy.testing import assert_almost_equal, assert_array_almost_equal
from .. import empirical_covariance, EmpiricalCovariance, \
ShrunkCovariance, shrunk_covariance, LedoitWolf, ledoit_wolf, OAS, oas
import numpy as np
from scikits.learn import datasets
X = datasets.load_iris().data
n_samples, n_features = X.shape
def test_covariance():
"""Tests Covariance module on a simple dataset.
"""
# test covariance fit from data
cov = EmpiricalCovariance()
cov.fit(X)
assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4)
assert_almost_equal(cov.error_norm(empirical_covariance(X)), 0)
assert_almost_equal(
cov.error_norm(empirical_covariance(X), norm='spectral'), 0)
# test with n_features = 1
X_1d = X[:,0]