本文整理汇总了Python中scikits.cuda.fft.ifft函数的典型用法代码示例。如果您正苦于以下问题:Python ifft函数的具体用法?Python ifft怎么用?Python ifft使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ifft函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: thunk
def thunk():
input_shape = inputs[0][0].shape
# construct output shape
# chop off the extra length-2 dimension for real/imag
output_shape = list(input_shape[:-1])
# restore full signal length
output_shape[-1] = (output_shape[-1] - 1) * 2
output_shape = tuple(output_shape)
z = outputs[0]
# only allocate if there is no previous allocation of the
# right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# input_pycuda is a float32 array with an extra dimension,
# but will be interpreted by scikits.cuda as a complex64
# array instead.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(output_shape[1:], np.complex64, np.float32,
batch=output_shape[0])
fft.ifft(input_pycuda, output_pycuda, plan[0])
示例2: gpu_c2r_ifft
def gpu_c2r_ifft(in1, is_gpuarray=False, store_on_gpu=False):
"""
This function makes use of the scikits implementation of the FFT for GPUs to take the complex to real IFFT.
INPUTS:
in1 (no default): The array on which the IFFT is to be performed.
is_gpuarray (default=True): Boolean specifier for whether or not input is on the gpu.
store_on_gpu (default=False): Boolean specifier for whether the result is to be left on the gpu or not.
OUTPUTS:
gpu_out1 The gpu array containing the result.
OR
gpu_out1.get() The result from the gpu array.
"""
if is_gpuarray:
gpu_in1 = in1
else:
gpu_in1 = gpuarray.to_gpu_async(in1.astype(np.complex64))
output_size = np.array(in1.shape)
output_size[1] = 2*(output_size[1]-1)
gpu_out1 = gpuarray.empty([output_size[0],output_size[1]], np.float32)
gpu_plan = Plan(output_size, np.complex64, np.float32)
ifft(gpu_in1, gpu_out1, gpu_plan)
scale_fft(gpu_out1)
if store_on_gpu:
return gpu_out1
else:
return gpu_out1.get()
示例3: fft_multiply_repeated
def fft_multiply_repeated(h_fft, x, cuda_dict=dict(use_cuda=False)):
"""Do FFT multiplication by a filter function (possibly using CUDA)
Parameters
----------
h_fft : 1-d array or gpuarray
The filtering array to apply.
x : 1-d array
The array to filter.
cuda_dict : dict
Dictionary constructed using setup_cuda_multiply_repeated().
Returns
-------
x : 1-d array
Filtered version of x.
"""
if not cuda_dict["use_cuda"]:
# do the fourier-domain operations
x = np.real(ifft(h_fft * fft(x), overwrite_x=True)).ravel()
else:
# do the fourier-domain operations, results in second param
cuda_dict["x"].set(x.astype(np.float64))
cudafft.fft(cuda_dict["x"], cuda_dict["x_fft"], cuda_dict["fft_plan"])
cuda_multiply_inplace_c128(h_fft, cuda_dict["x_fft"])
# If we wanted to do it locally instead of using our own kernel:
# cuda_seg_fft.set(cuda_seg_fft.get() * h_fft)
cudafft.ifft(cuda_dict["x_fft"], cuda_dict["x"], cuda_dict["ifft_plan"], False)
x = np.array(cuda_dict["x"].get(), dtype=x.dtype, subok=True, copy=False)
return x
示例4: thunk
def thunk():
input_shape = inputs[0][0].shape
output_shape = input_shape
z = outputs[0]
# only allocate if there is no previous allocation of the
# right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# input_pycuda is a float32 array with an extra dimension,
# but will be interpreted by scikits.cuda as a complex64
# array instead.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(output_shape[1:-1], np.complex64, np.complex64,
batch=output_shape[0])
fft.ifft(input_pycuda, output_pycuda, plan[0])
compute_map[node.outputs[0]][0] = True
示例5: test_ifft_complex128_to_float64
def test_ifft_complex128_to_float64(self):
x = np.asarray(np.random.rand(self.N), np.float64)
xf = np.asarray(np.fft.fft(x), np.complex128)
xf_gpu = gpuarray.to_gpu(xf[0:self.N/2+1])
x_gpu = gpuarray.empty(self.N, np.float64)
plan = fft.Plan(x.shape, np.complex128, np.float64)
fft.ifft(xf_gpu, x_gpu, plan, True)
assert np.allclose(x, x_gpu.get(), atol=atol_float64)
示例6: test_ifft_complex64_to_float32_1d
def test_ifft_complex64_to_float32_1d(self):
x = np.asarray(np.random.rand(self.N), np.float32)
xf = np.asarray(np.fft.rfftn(x), np.complex64)
xf_gpu = gpuarray.to_gpu(xf)
x_gpu = gpuarray.empty(self.N, np.float32)
plan = fft.Plan(x.shape, np.complex64, np.float32)
fft.ifft(xf_gpu, x_gpu, plan, True)
assert np.allclose(x, x_gpu.get(), atol=atol_float32)
示例7: irfft2
def irfft2(self, i, o = None, cache = True):
shape = i.shape[:-2]
cshape = i.shape[-2:]
rshape = (cshape[0], (cshape[1]-1)*2)
batch = np.prod(shape, dtype=np.int)
plan = self.get_plan(cache, rshape, self.ctype, self.rtype, batch)
if o is None:
o = self.context.empty(shape+rshape, self.rtype)
cu_fft.ifft(i, o, plan, scale=True)
return o
示例8: test_batch_ifft_complex128_to_float64_2d
def test_batch_ifft_complex128_to_float64_2d(self):
# Note that since rfftn returns a Fortran-ordered array, it
# needs to be reformatted as a C-ordered array before being
# passed to gpuarray.to_gpu:
x = np.asarray(np.random.rand(self.B, self.N, self.M), np.float64)
xf = np.asarray(np.fft.rfftn(x, axes=(1,2)), np.complex128)
xf_gpu = gpuarray.to_gpu(np.ascontiguousarray(xf))
x_gpu = gpuarray.empty((self.B, self.N, self.M), np.float64)
plan = fft.Plan([self.N, self.M], np.complex128, np.float64, batch=self.B)
fft.ifft(xf_gpu, x_gpu, plan, True)
assert np.allclose(x, x_gpu.get(), atol=atol_float64)
示例9: test_ifft_complex64_to_float32_2d
def test_ifft_complex64_to_float32_2d(self):
# Note that since rfftn returns a Fortran-ordered array, it
# needs to be reformatted as a C-ordered array before being
# passed to gpuarray.to_gpu:
x = np.asarray(np.random.rand(self.N, self.M), np.float32)
xf = np.asarray(np.fft.rfftn(x), np.complex64)
xf_gpu = gpuarray.to_gpu(np.ascontiguousarray(xf))
x_gpu = gpuarray.empty((self.N, self.M), np.float32)
plan = fft.Plan(x.shape, np.complex64, np.float32)
fft.ifft(xf_gpu, x_gpu, plan, True)
assert np.allclose(x, x_gpu.get(), atol=atol_float32)
示例10: convol
def convol(self, data1, data2):
self.init()
self.ctx.push()
plan = self.__class__.plans[self.shape]
data1_gpu = self.__class__.data1_gpus[self.shape]
data2_gpu = self.__class__.data2_gpus[self.shape]
data1_gpu.set(data1.astype(numpy.complex128))
cu_fft.fft(data1_gpu, data1_gpu, plan)
data2_gpu.set(data2.astype(numpy.complex128))
cu_fft.fft(data2_gpu, data2_gpu, plan)
# data1_gpu *= data2_gpu.conj()
self.multconj(data1_gpu, data2_gpu)
cu_fft.ifft(data1_gpu, data1_gpu, plan, True)
# self.ctx.synchronize()
res = data1_gpu.get().real
self.ctx.pop()
return res
示例11: cufft
def cufft(data,shape=None,inverse=False):
if shape:
data = pad2(data,shape)
plan = CUFFT_PLANS.get(data.shape)
if not plan:
plan = cu_fft.Plan(data.shape,np.complex64,np.complex64)
CUFFT_PLANS[data.shape] = plan
gpu_data = gpuarray.to_gpu(np.cast[np.complex64](data))
if inverse:
cu_fft.ifft(gpu_data,gpu_data,plan)
else:
cu_fft.fft(gpu_data,gpu_data,plan)
r = gpu_data.get()
return r
示例12: sample_defrost_gpu
def sample_defrost_gpu(lat, func, gamma, m2_eff):
"""Calculates a sample of random values in the lattice
lat = Lattice
func = name of Cuda kernel
n = size of cubic lattice
gamma = -0.25 or +0.25
m2_eff = effective mass
This uses CuFFT to calculate FFTW.
"""
import scikits.cuda.fft as fft
import fftw3
"Various constants:"
mpl = lat.mpl
n = lat.n
nn = lat.nn
os = 16
nos = n*pow(os,2)
dk = lat.dk
dx = lat.dx
dkos = dk/(2.*os)
dxos = dx/os
kcut = nn*dk/2.0
norm = 0.5/(math.sqrt(2*pi*dk**3.)*mpl)*(dkos/dxos)
ker = np.empty(nos,dtype = lat.prec_real)
fft1 = fftw3.Plan(ker,ker, direction='forward', flags=['measure'],
realtypes = ['realodd 10'])
for k in xrange(nos):
kk = (k+0.5)*dkos
ker[k]=kk*(kk**2. + m2_eff)**gamma*math.exp(-(kk/kcut)**2.)
fft1.execute()
fftw3.destroy_plan(fft1)
for k in xrange(nos):
ker[k] = norm*ker[k]/(k+1)
Fk_gpu = gpuarray.zeros((n/2+1,n,n), dtype = lat.prec_complex)
ker_gpu = gpuarray.to_gpu(ker)
tmp_gpu = gpuarray.zeros((n,n,n),dtype = lat.prec_real)
plan = fft.Plan(tmp_gpu.shape, lat.prec_real, lat.prec_complex)
plan2 = fft.Plan(tmp_gpu.shape, lat.prec_complex, lat.prec_real)
func(tmp_gpu, ker_gpu, np.uint32(nn), np.float64(os),
np.uint32(lat.dimx), np.uint32(lat.dimy), np.uint32(lat.dimz),
block = lat.cuda_block_1, grid = lat.cuda_grid)
fft.fft(tmp_gpu, Fk_gpu, plan)
if lat.test==True:
print'Testing mode on! Set testQ to False to disable this.\n'
np.random.seed(1)
rr1 = (np.random.normal(size=Fk_gpu.shape)+
np.random.normal(size=Fk_gpu.shape)*1j)
Fk = Fk_gpu.get()
Fk*= rr1
Fk_gpu = gpuarray.to_gpu(Fk)
fft.ifft(Fk_gpu, tmp_gpu, plan2)
res = (tmp_gpu.get()).astype(lat.prec_real)
res *= 1./lat.VL
return res
示例13: int
ii = 0
tmpimg = numpy.zeros((n, m, k), dtype=numpy.float32)
ln = sq + 5
mags = mag[indexp].sum()
del indexp
s = 3
N2 = int(N * 0.7)
N3 = int(N * 0.7)
gpu_data.set(sobject.astype(numpy.complex64))
pycuda.driver.memcpy_dtod(gpu_last.gpudata, gpu_data.gpudata, gpu_data.nbytes)
gpu_intensity.set(mag)
gpu_mask.set(sobm)
#print real_space.nbytes
for i in range(N):
t0 = time()
cu_fft.fft(gpu_data, gpu_data, plan)
constrains_fourier(gpu_data, gpu_intensity)
cu_fft.ifft(gpu_data, gpu_data, plan, True)
constrains_real(gpu_data, gpu_last, gpu_mask, beta)
pycuda.driver.memcpy_dtod(gpu_last.gpudata, gpu_data.gpudata, gpu_data.nbytes)
t1 = time()
ctx.synchronize()
t2 = time()
print("With CUDA, the full loop took %.3fs but after sync %.3fs" % (t1 - t0, t2 - t0))
del tmpimg
print "it took", time() - time0, N / (time() - time0)
print "smallest error", serr, "number", nerr
示例14:
print 'Testing fft/ifft..'
N = 4096*16
batch_size = 16
x = np.asarray(np.random.rand(batch_size, N), np.float32)
xf = np.fft.fft(x)
y = np.real(np.fft.ifft(xf))
x_gpu = gpuarray.to_gpu(x)
xf_gpu = gpuarray.empty((batch_size, N/2+1), np.complex64)
plan_forward = cu_fft.Plan(N, np.float32, np.complex64, batch_size)
cu_fft.fft(x_gpu, xf_gpu, plan_forward)
y_gpu = gpuarray.empty_like(x_gpu)
plan_inverse = cu_fft.Plan(N, np.complex64, np.float32, batch_size)
cu_fft.ifft(xf_gpu, y_gpu, plan_inverse, True)
print 'Success status: ', np.allclose(y, y_gpu.get(), atol=1e-6)
print 'Testing in-place fft..'
x = np.asarray(np.random.rand(batch_size, N)+\
1j*np.random.rand(batch_size, N), np.complex64)
x_gpu = gpuarray.to_gpu(x)
plan = cu_fft.Plan(N, np.complex64, np.complex64, batch_size)
cu_fft.fft(x_gpu, x_gpu, plan)
cu_fft.ifft(x_gpu, x_gpu, plan, True)
print 'Success status: ', np.allclose(x, x_gpu.get(), atol=1e-6)
示例15: resample_sdbe_to_r2dbe_fft_interp
def resample_sdbe_to_r2dbe_fft_interp(Xs,interp_kind="nearest"):
"""
Resample SWARM spectrum product in time-domain at R2DBE rate using
iFFT and then interpolation in the time-domain.
Arguments:
----------
Xs -- MxN numpy array in which the zeroth dimension is increasing
snapshot index, and the first dimension is the positive frequency
half of the spectrum.
interp_kind -- Kind of interpolation.
Returns:
--------
xs -- The time-domain signal sampled at the R2DBE rate.
"""
# timestep sizes for SWARM and R2DBE rates
dt_s = 1.0/SWARM_RATE
dt_r = 1.0/R2DBE_RATE
# cuFFT plan for complex to real DFT
plan = cu_fft.Plan(SWARM_SAMPLES_PER_WINDOW,complex64,float32,Xs.shape[0])
# load complex spectrum to device
x_d = gpuarray.to_gpu(Xs)
xp_d = gpuarray.empty((Xs.shape[0],Xs.shape[1]+1),dtype=complex64)
# pad nyquist with zeros
block = (32,32,1)
grid = (int(ceil(1. * (Xs.shape[1]+1) / block[1])), int(ceil(1. * Xs.shape[0] / block[0])))
fill_padded = mod.get_function("fill_padded")
fill_padded(int32(Xs.shape[0]),xp_d,int32(Xs.shape[1]+1),x_d,int32(Xs.shape[1]),\
block=block,grid=grid)
# allocate memory for time series
xf_d = gpuarray.empty((Xs.shape[0],SWARM_SAMPLES_PER_WINDOW),float32)
# calculate time series, include scaling
cu_fft.ifft(xp_d,xf_d,plan,scale=True)
# and interpolate
xs_size = int(floor(Xs.shape[0]*SWARM_SAMPLES_PER_WINDOW*dt_s/dt_r)) - 1
TPB = 64 # threads per block
nB = int(ceil(1. * xs_size / TPB)) # number of blocks
xs_d = gpuarray.empty(xs_size,float32) # decimated time-series
if interp_kind == 'nearest':
# compile kernel
nearest_interp = mod.get_function(interp_kind)
# call kernel
nearest_interp(xf_d,xs_d,int32(xs_size),float64(dt_r/dt_s),block=(TPB,1,1),grid=(nB,1))
elif interp_kind == 'linear':
# compile kernel
linear_interp = mod.get_function("copy_texture_kernel")
# get texture reference
a_texref = mod.get_texref("a_tex")
a_texref.set_filter_mode(drv.filter_mode.LINEAR) # linear
#a_texref.set_filter_mode(drv.filter_mode.POINT) # nearest-neighbor
# move time series to texture reference
# following http://lists.tiker.net/pipermail/pycuda/2009-November/001916.html
descr = drv.ArrayDescriptor()
descr.format= drv.array_format.FLOAT
descr.height = Xs.shape[0]
descr.width = SWARM_SAMPLES_PER_WINDOW
descr.num_channels = 1
a_texref.set_address_2d(xf_d.gpudata,descr,SWARM_SAMPLES_PER_WINDOW*4)
# set up linear interpolation over texture
linear_interp(xs_d,int32(xs_size),float64(dt_r/dt_s),int32(SWARM_SAMPLES_PER_WINDOW),\
texrefs=[a_texref],block=(TPB,1,1),grid=(nB,1))
return xs_d.get()