本文整理汇总了Python中sas.models.SphereModel.SphereModel.run方法的典型用法代码示例。如果您正苦于以下问题:Python SphereModel.run方法的具体用法?Python SphereModel.run怎么用?Python SphereModel.run使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sas.models.SphereModel.SphereModel
的用法示例。
在下文中一共展示了SphereModel.run方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestSphere
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
class TestSphere(unittest.TestCase):
""" Unit tests for sphere model using evalDistribution function """
def setUp(self):
from sas.models.SphereModel import SphereModel
self.comp = SphereModel()
self.x = numpy.array([1.0,2.0,3.0, 4.0])
self.y = self.x +1
def test1D(self):
""" Test 1D model for a sphere with vector as input"""
answer = numpy.array([5.63877831e-05,2.57231782e-06,2.73704050e-07,2.54229069e-08])
testvector= self.comp.evalDistribution(self.x)
self.assertAlmostEqual(len(testvector),4)
for i in xrange(len(answer)):
self.assertAlmostEqual(testvector[i],answer[i])
def test1D_1(self):
""" Test 2D model for a sphere with scalar as input"""
self.assertAlmostEqual(self.comp.run(1.0),5.63877831e-05, 4)
def test1D_2(self):
""" Test 2D model for a sphere for 2 scalar """
self.assertAlmostEqual(self.comp.run([1.0, 1.3]), 56.3878e-06, 4)
def test1D_3(self):
""" Test 2D model for a Shpere for 2 vectors as input """
#x= numpy.reshape(self.x, [len(self.x),1])
#y= numpy.reshape(self.y, [1,len(self.y)])
vect = self.comp.evalDistribution([self.x,self.y])
self.assertAlmostEqual(vect[0],9.2985e-07, 4)
self.assertAlmostEqual(vect[len(self.x)-1],1.3871e-08, 4)
示例2: testGetIq
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
def testGetIq(self):
""" Test the output of I(q) to the analytical solution
If the normalization is wrong, we will have to fix it.
getIq() should call getPr() behind the scenes so that
the user doesnt have to do it if he doesn't need to.
"""
from sas.models.SphereModel import SphereModel
sphere = SphereModel()
sphere.setParam('radius', 10.0)
sphere.setParam('contrast', 1.0)
sphere.setParam('background', 0.0)
sphere.setParam('scale', 1.0)
handle = self.canvas.add('sphere')
self.canvas.setParam('%s.radius' % handle, 10.0)
self.canvas.setParam('%s.contrast' % handle, 1.0)
sim_1 = self.canvas.getIq(0.001)
ana_1 = sphere.run(0.001)
sim_2 = self.canvas.getIq(0.01)
ana_2 = sphere.run(0.01)
# test the shape of the curve (calculate relative error
# on the output and it should be compatible with zero
# THIS WILL DEPEND ON THE NUMBER OF SPACE POINTS:
# that why we need some error analysis.
self.assert_( (sim_2*ana_1/sim_1 - ana_2)/ana_2 < 0.1)
# test the absolute amplitude
self.assert_( math.fabs(sim_2-ana_2)/ana_2 < 0.1)
示例3: TestPerlNecklace
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
class TestPerlNecklace(unittest.TestCase):
""" Unit tests for PerlNecklace """
def setUp(self):
from sas.models.PearlNecklaceModel import PearlNecklaceModel
self.pnl = PearlNecklaceModel()
from sas.models.LinearPearlsModel import LinearPearlsModel
self.lpm = LinearPearlsModel()
from sas.models.SphereModel import SphereModel
self.sphere = SphereModel()
from sas.models.BarBellModel import BarBellModel
self.bar = BarBellModel()
def testwithsphere(self):
""" Compare 1D model with sphere """
self.pnl.setParam("radius", 60)
self.pnl.setParam("num_pearls", 1)
self.pnl.setParam("sld_pearl", 2e-06)
self.pnl.setParam("sld_solv", 1e-06)
self.assertAlmostEqual(self.pnl.run(0.001), self.sphere.run(0.001), 5)
self.assertAlmostEqual(self.pnl.run(0.005), self.sphere.run(0.005), 5)
self.assertAlmostEqual(self.pnl.run(0.01), self.sphere.run(0.01), 5)
self.assertAlmostEqual(self.pnl.run(0.05), self.sphere.run(0.05), 5)
self.assertAlmostEqual(self.pnl.run(0.1), self.sphere.run(0.1), 5)
self.assertAlmostEqual(self.pnl.run(0.5), self.sphere.run(0.5), 5)
def testwithbarbell(self):
"""
Compare 1D model with barbell
Note: pearlnecklace assumes infinite thin rod
"""
self.pnl.setParam("radius", 20)
self.pnl.setParam("num_pearls", 2)
self.pnl.setParam("sld_pearl", 1e-06)
self.pnl.setParam("sld_string", 1e-06)
self.pnl.setParam("sld_solv", 6.3e-06)
self.pnl.setParam("thick_string", 0.1)
self.pnl.setParam("edge_separation", 400)
self.bar.setParam("rad_bar", 0.1)
self.bar.setParam("rad_bell", 20)
self.lpm.setParam("radius", 20)
self.lpm.setParam("num_pearls", 2)
self.lpm.setParam("sld_pearl", 1e-06)
self.lpm.setParam("sld_solv", 6.3e-06)
self.lpm.setParam("edge_separation", 400)
self.assertAlmostEqual(self.pnl.run(0.001), self.bar.run(0.001), 1)
self.assertAlmostEqual(self.pnl.run(0.005), self.bar.run(0.005), 1)
self.assertAlmostEqual(self.pnl.run(0.01), self.bar.run(0.01), 1)
self.assertAlmostEqual(self.pnl.run(0.05), self.bar.run(0.05), 1)
self.assertAlmostEqual(self.pnl.run(0.1), self.bar.run(0.1), 1)
self.assertAlmostEqual(self.pnl.run(0.5), self.bar.run(0.5), 1)
self.assertAlmostEqual(self.pnl.run(0.001), self.lpm.run(0.001), 1)
self.assertAlmostEqual(self.pnl.run(0.005), self.lpm.run(0.005), 1)
self.assertAlmostEqual(self.pnl.run(0.01), self.lpm.run(0.01), 1)
self.assertAlmostEqual(self.pnl.run(0.05), self.lpm.run(0.05), 1)
self.assertAlmostEqual(self.pnl.run(0.1), self.lpm.run(0.1), 1)
self.assertAlmostEqual(self.pnl.run(0.5), self.lpm.run(0.5), 1)
示例4: TestSphere
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
class TestSphere(unittest.TestCase):
""" Unit tests for sphere model """
def setUp(self):
from sas.models.SphereModel import SphereModel
self.comp = SphereModel()
def test1D(self):
""" Test 1D model for a sphere """
self.assertAlmostEqual(self.comp.run(1.0), 5.6387e-5, 4)
def test1D_2(self):
""" Test 2D model for a sphere """
self.assertAlmostEqual(self.comp.run([1.0, 1.3]), 5.6387e-5, 4)
示例5: test_1
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
def test_1():
radius = 15
density = .1
vol = 4/3*math.pi*radius*radius*radius
npts = vol*density
canvas = VolumeCanvas.VolumeCanvas()
canvas.setParam('lores_density', density)
handle = canvas.add('sphere')
canvas.setParam('%s.radius' % handle, radius)
canvas.setParam('%s.contrast' % handle, 1.0)
if False:
# Time test
t_0 = time.time()
value_1 = 1.0e8*canvas.getIq(0.1)
print "density = 0.1: output=%g time=%g" % (value_1, time.time()-t_0)
t_0 = time.time()
canvas.setParam('lores_density', 1)
value_1 = 1.0e8*canvas.getIq(0.1)
print "density = 1000: output=%g time=%g" % (value_1, time.time()-t_0)
t_0 = time.time()
canvas.setParam('lores_density', 0.01)
value_1 = 1.0e8*canvas.getIq(0.1)
print "density = 0.00001: output=%g time=%g" % (value_1, time.time()-t_0)
print
sphere = SphereModel()
sphere.setParam('radius', radius)
sphere.setParam('scale', 1.0)
sphere.setParam('contrast', 1.0)
# Simple sphere sum(Pr) = (rho*V)^2
# each p(r) point has a volume of 1/density
for i in range(35):
q = 0.001 + 0.01*i
#sim_1 = 1.0e8*canvas.getIq(q)*4/3*math.pi/(density*density*density)
sim_1 = canvas.getIq(q)
ana_1 = sphere.run(q)
#ana_1 = form_factor(q, radius)
print "q=%g sim=%g ana=%g ratio=%g" % (q, sim_1, ana_1, sim_1/ana_1)
示例6: TestSphereGauss
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
class TestSphereGauss(unittest.TestCase):
"""
Testing C++ Polydispersion w/ sphere comparing to IGOR/NIST computation
"""
def setUp(self):
loader = Loader()
## IGOR/NIST computation
self.output_gauss=loader.load('Gausssphere.txt')
self.output_shulz=loader.load('Schulzsphere.txt')
from sas.models.SphereModel import SphereModel
self.model= SphereModel()
self.model.setParam('scale', 0.01)
self.model.setParam('radius', 60.0)
self.model.setParam('sldSph', 1.e-6)
self.model.setParam('sldSolv', 3.e-6)
self.model.setParam('background', 0.001)
def test_gauss(self):
from sas.models.dispersion_models import GaussianDispersion
disp_g = GaussianDispersion()
self.model.set_dispersion('radius', disp_g)
self.model.dispersion['radius']['width'] = 0.2
self.model.dispersion['radius']['npts'] = 100
self.model.dispersion['radius']['nsigmas'] = 10
for ind in range(len(self.output_gauss.x)):
self.assertAlmostEqual(self.model.run(self.output_gauss.x[ind]),
self.output_gauss.y[ind], 2)
def test_shulz(self):
from sas.models.dispersion_models import SchulzDispersion
disp_s = SchulzDispersion()
self.model.set_dispersion('radius', disp_s)
self.model.dispersion['radius']['width'] = 0.2
self.model.dispersion['radius']['npts'] = 100
self.model.dispersion['radius']['nsigmas'] = 10
for ind in range(len(self.output_shulz.x)):
self.assertAlmostEqual(self.model.run(self.output_gauss.x[ind]),
self.output_shulz.y[ind], 3)
示例7: testWrongOrder
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
def testWrongOrder(self):
from sas.models.SphereModel import SphereModel
self.set_coreshell_on_canvas(1, 0)
# Core shell model
sphere = SphereModel()
# Core radius
sphere.setParam('radius', self.outer_radius)
# Shell thickness
sphere.setParam('contrast', self.shell_sld)
sphere.setParam('background', 0.0)
sphere.setParam('scale', 1.0)
ana = sphere.run(0.05)
val, err = self.canvas.getIqError(0.05)
#print 'wrong', ana, val, err
self.assert_(math.fabs(ana-val)/ana < 1.1)
示例8: TestSphere
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
class TestSphere(unittest.TestCase):
"""
Testing C++ Cylinder model
"""
def setUp(self):
from sas.models.SphereModel import SphereModel
self.model= SphereModel()
self.model.setParam('scale', 1.0)
self.model.setParam('radius', 60.0)
self.model.setParam('sldSph', 2.0)
self.model.setParam('sldSolv', 1.0)
self.model.setParam('background', 0.0)
def test_simple(self):
"""
Test simple 1D and 2D values
Numbers taken from model that passed validation, before
the update to C++ underlying class.
"""
self.assertTrue(math.fabs(self.model.run(0.001)-90412744456148.094)<=50.0)
self.assertAlmostEqual(self.model.runXY([0.001,0.001]),
90347660670656.391, 1)
def test_dispersion(self):
"""
Test with dispersion
"""
from sas.models.DisperseModel import DisperseModel
disp = DisperseModel(self.model, ['radius'], [10])
disp.setParam('n_pts', 10)
disp.setParam('radius.npts', 10)
disp.setParam('radius.nsigmas', 2.5)
self.assertTrue(math.fabs(disp.run(0.001)-96795008379475.219<50.0))
def test_new_disp(self):
from sas.models.dispersion_models import GaussianDispersion
disp_rm = GaussianDispersion()
self.model.set_dispersion('radius', disp_rm)
self.model.dispersion['radius']['width'] = 0.1666666667
self.model.dispersion['radius']['npts'] = 10
self.model.dispersion['radius']['nsigmas'] = 2
示例9: test_4
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
def test_4():
radius = 15
density = .1
vol = 4/3*math.pi*radius*radius*radius
npts = vol*density
canvas = VolumeCanvas.VolumeCanvas()
canvas.setParam('lores_density', density)
#handle = canvas.add('sphere')
#canvas.setParam('%s.radius' % handle, radius)
#canvas.setParam('%s.contrast' % handle, 1.0)
pdb = canvas.add('test.pdb')
sphere = SphereModel()
sphere.setParam('radius', radius)
sphere.setParam('scale', 1.0)
sphere.setParam('contrast', 1.0)
# Simple sphere sum(Pr) = (rho*V)^2
# each p(r) point has a volume of 1/density
for i in range(35):
q = 0.001 + 0.01*i
#sim_1 = 1.0e8*canvas.getIq(q)*4/3*math.pi/(density*density*density)
sim_1 = canvas.getIq(q)
ana_1 = sphere.run(q)
#ana_1 = form_factor(q, radius)
print "q=%g sim=%g ana=%g ratio=%g" % (q, sim_1, ana_1, sim_1/ana_1)
示例10: TestEvalMethods
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
class TestEvalMethods(unittest.TestCase):
""" Testing evalDistribution for C models """
def setUp(self):
self.model= SphereModel()
def test_scalar_methods(self):
"""
Simple test comparing the run(), runXY() and
evalDistribution methods
"""
q1 = self.model.run(0.001)
q2 = self.model.runXY(0.001)
q4 = self.model.run(0.002)
qlist3 = numpy.asarray([0.001, 0.002])
q3 = self.model.evalDistribution(qlist3)
self.assertEqual(q1, q2)
self.assertEqual(q1, q3[0])
self.assertEqual(q4, q3[1])
def test_XY_methods(self):
"""
Compare to the runXY() method for 2D models.
+--------+--------+--------+
qy=0.009 | | | |
+--------+--------+--------+
qy-0.006 | | | |
+--------+--------+--------+
qy=0.003 | | | |
+--------+--------+--------+
qx=0.001 0.002 0.003
"""
# These are the expected values for all bins
expected = numpy.zeros([3,3])
for i in range(3):
for j in range(3):
q_length = math.sqrt( (0.001*(i+1.0))*(0.001*(i+1.0)) + (0.003*(j+1.0))*(0.003*(j+1.0)) )
expected[i][j] = self.model.run(q_length)
qx_values = [0.001, 0.002, 0.003]
qy_values = [0.003, 0.006, 0.009]
qx = numpy.asarray(qx_values)
qy = numpy.asarray(qy_values)
new_x = numpy.tile(qx, (len(qy),1))
new_y = numpy.tile(qy, (len(qx),1))
new_y = new_y.swapaxes(0,1)
#iq is 1d array now (since 03-12-2010)
qx_prime = new_x.flatten()
qy_prime = new_y.flatten()
iq = self.model.evalDistribution([qx_prime, qy_prime])
for i in range(3):
for j in range(3):
# convert index into 1d array
k = i+len(qx)*j
self.assertAlmostEquals(iq[k], expected[i][j])
示例11: TestsphereHardS
# 需要导入模块: from sas.models.SphereModel import SphereModel [as 别名]
# 或者: from sas.models.SphereModel.SphereModel import run [as 别名]
class TestsphereHardS(unittest.TestCase):
"""
Unit tests for SphereModel(Q) * HardsphereStructure(Q)
"""
def setUp(self):
from sas.models.SphereModel import SphereModel
from sas.models.HardsphereStructure import HardsphereStructure
from sas.models.DiamCylFunc import DiamCylFunc
from sas.models.MultiplicationModel import MultiplicationModel
self.model = SphereModel()
self.model2 = HardsphereStructure()
self.model3 = MultiplicationModel(self.model, self.model2)
self.modelD = DiamCylFunc()
#Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions
def test_multplication_radius(self):
"""
test multiplication model (check the effective radius & the output
of the multiplication)
"""
self.model.setParam("radius", 60)
modelDrun = 60
self.model2.setParam("volfraction", 0.2)
self.model2.setParam("effect_radius", modelDrun )
#Compare new method with old method
self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1))
#Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER
self.assertEqual(self.model.calculate_ER(), modelDrun)
def testMultiplicationParam(self):
""" Test Multiplication (check the parameters)"""
## test details dictionary
## test parameters list
list3= self.model3.getParamList()
for item in self.model.getParamList():
if not 'scale' in item:
self.assert_(item in list3)
for item in self.model2.getParamList():
#model3 parameters should not include effect_radius*
if not 'effect_radius' in item:
self.assert_(item in list3)
## test set value for parameters and get paramaters
self.model3.setParam("scale_factor", 15)
self.assertEqual(self.model3.getParam("scale_factor"), 15)
self.model3.setParam("radius", 20)
self.assertEqual(self.model3.getParam("radius"), 20)
self.model3.setParam("radius.width", 15)
self.assertEqual(self.model3.getParam("radius.width"), 15)
self.model3.setParam("scale_factor", 15)
self.assertEqual(self.model3.getParam("scale_factor"), 15)
self.assertEqual(self.model3.getParam("volfraction"), self.model.getParam("scale"))
## Dispersity
list3= self.model3.getDispParamList()
self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width'])
from sas.models.dispersion_models import ArrayDispersion
disp_th = ArrayDispersion()
values_th = numpy.zeros(100)
weights = numpy.zeros(100)
for i in range(100):
values_th[i]=(math.pi/99.0*i)
weights[i]=(1.0)
disp_th.set_weights(values_th, weights)
self.model3.set_dispersion('radius', disp_th)
val_1d = self.model3.run(math.sqrt(0.0002))
val_2d = self.model3.runXY([0.01,0.01])
self.assertTrue(math.fabs(val_1d-val_2d)/val_1d < 0.02)
model4= self.model3.clone()
self.assertEqual(model4.getParam("radius"), 20)