本文整理汇总了Python中sans.common.general_functions.create_unmanaged_algorithm函数的典型用法代码示例。如果您正苦于以下问题:Python create_unmanaged_algorithm函数的具体用法?Python create_unmanaged_algorithm怎么用?Python create_unmanaged_algorithm使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了create_unmanaged_algorithm函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: provide_workspace_with_proton_charge
def provide_workspace_with_proton_charge(is_event=True):
sample_name = "CreateSampleWorkspace"
sample_options = {"OutputWorkspace": "dummy",
"NumBanks": 1,
"BankPixelWidth": 2}
if is_event:
sample_options.update({"WorkspaceType": "Event"})
else:
sample_options.update({"WorkspaceType": "Histogram"})
sample_alg = create_unmanaged_algorithm(sample_name, **sample_options)
sample_alg.execute()
workspace = sample_alg.getProperty("OutputWorkspace").value
# Provide a proton charge
log_name = "AddTimeSeriesLog"
log_options = {"Workspace": workspace,
"Name": "proton_charge",
"Type": "double"}
log_alg = create_unmanaged_algorithm(log_name, **log_options)
time = DateAndTime("2010-01-01T00:10:00")
for index in range(0, 10):
time += 1000000000
value = 1.0
log_alg.setProperty("Time", str(time))
log_alg.setProperty("Value", value)
log_alg.execute()
return workspace
示例2: _compare_workspace
def _compare_workspace(self, workspace, reference_file_name, check_spectra_map=True):
# Load the reference file
load_name = "LoadNexusProcessed"
load_options = {"Filename": reference_file_name,
"OutputWorkspace": EMPTY_NAME}
load_alg = create_unmanaged_algorithm(load_name, **load_options)
load_alg.execute()
reference_workspace = load_alg.getProperty("OutputWorkspace").value
# Compare reference file with the output_workspace
# We need to disable the instrument comparison, it takes way too long
# We need to disable the sample -- Not clear why yet
# operation how many entries can be found in the sample logs
compare_name = "CompareWorkspaces"
compare_options = {"Workspace1": workspace,
"Workspace2": reference_workspace,
"Tolerance": 1e-6,
"CheckInstrument": False,
"CheckSample": False,
"ToleranceRelErr": True,
"CheckAllData": True,
"CheckMasking": True,
"CheckType": True,
"CheckAxes": True,
"CheckSpectraMap": check_spectra_map}
compare_alg = create_unmanaged_algorithm(compare_name, **compare_options)
compare_alg.setChild(False)
compare_alg.execute()
result = compare_alg.getProperty("Result").value
self.assertTrue(result)
示例3: _get_sample_workspace
def _get_sample_workspace(with_zero_errors, convert_to_numeric_axis=False):
create_name = "CreateSimulationWorkspace"
create_options = {"Instrument": "LARMOR",
"BinParams": '1,10,1000',
"UnitX": 'MomentumTransfer',
"OutputWorkspace": EMPTY_NAME}
create_alg = create_unmanaged_algorithm(create_name, **create_options)
create_alg.execute()
workspace = create_alg.getProperty("OutputWorkspace").value
crop_name = "CropWorkspace"
crop_options = {"InputWorkspace": workspace,
"OutputWorkspace": EMPTY_NAME,
"EndWorkspaceIndex": 0}
crop_alg = create_unmanaged_algorithm(crop_name, **crop_options)
crop_alg.execute()
workspace = crop_alg.getProperty("OutputWorkspace").value
if convert_to_numeric_axis:
convert_name = "ConvertSpectrumAxis"
convert_options = {"InputWorkspace": workspace,
"OutputWorkspace": EMPTY_NAME,
"Target": 'ElasticQ',
"EFixed": 1}
convert_alg = create_unmanaged_algorithm(convert_name, **convert_options)
convert_alg.execute()
workspace = convert_alg.getProperty("OutputWorkspace").value
if with_zero_errors:
errors = workspace.dataE(0)
errors[0] = 0.0
errors[14] = 0.0
errors[45] = 0.0
return workspace
示例4: mask_with_mask_files
def mask_with_mask_files(mask_info, workspace):
"""
Apply mask files to the workspace
Rolling our own MaskDetectors wrapper since masking is broken in a couple
of places that affect us here.
Calling MaskDetectors(Workspace=ws_name, MaskedWorkspace=mask_ws_name) is
not something we can do because the algorithm masks by ws index rather than
detector id, and unfortunately for SANS the detector table is not the same
for MaskingWorkspaces as it is for the workspaces containing the data to be
masked. Basically, we get a mirror image of what we expect. Instead, we
have to extract the det IDs and use those via the DetectorList property.
:param mask_info: a SANSStateMask object.
:param workspace: the workspace to be masked.
:return: the masked workspace.
"""
mask_files = mask_info.mask_files
if mask_files:
idf_path = mask_info.idf_path
# Mask loader
load_name = "LoadMask"
load_options = {"Instrument": idf_path,
"OutputWorkspace": EMPTY_NAME}
load_alg = create_unmanaged_algorithm(load_name, **load_options)
dummy_params = {"OutputWorkspace": EMPTY_NAME}
mask_alg = create_unmanaged_algorithm("MaskInstrument", **dummy_params)
clear_alg = create_unmanaged_algorithm("ClearMaskedSpectra", **dummy_params)
# Masker
for mask_file in mask_files:
mask_file = find_full_file_path(mask_file)
# Get the detector ids which need to be masked
load_alg.setProperty("InputFile", mask_file)
load_alg.execute()
masking_workspace = load_alg.getProperty("OutputWorkspace").value
# Could use MaskDetectors directly with masking_workspace but it does not
# support MPI. Use a three step approach via a, b, and c instead.
# a) Extract detectors to mask from MaskWorkspace
det_ids = masking_workspace.getMaskedDetectors()
# b) Mask the detector ids on the instrument
mask_alg.setProperty("InputWorkspace", workspace)
mask_alg.setProperty("OutputWorkspace", workspace)
mask_alg.setProperty("DetectorIDs", det_ids)
mask_alg.execute()
workspace = mask_alg.getProperty("OutputWorkspace").value
# c) Clear data in all spectra associated with masked detectors
clear_alg.setProperty("InputWorkspace", workspace)
clear_alg.setProperty("OutputWorkspace", workspace)
clear_alg.execute()
workspace = clear_alg.getProperty("OutputWorkspace").value
return workspace
示例5: _get_wavelength_adjustment_workspace
def _get_wavelength_adjustment_workspace(self, wavelength_adjustment_file, transmission_workspace,
monitor_normalization_workspace, rebin_string):
"""
This creates a workspace with wavelength adjustments, ie this will be a correction for the bins, but it will
be the same for all pixels. This is essentially the product of several workspaces.
The participating workspaces are:
1. A workspace loaded from a calibration file
2.. The workspace resulting from the monitor normalization
3. The workspace resulting from the transmission calculation (using SANSCalculateTransmission) if applicable
:param wavelength_adjustment_file: the file path to the wavelength adjustment file
:param transmission_workspace: the calculated transmission workspace (which can be None)
:param monitor_normalization_workspace: the monitor normalization workspace
:param rebin_string: the parameters for rebinning
:return: a general wavelength adjustment workspace
"""
# 1. Get the wavelength correction workspace from the file
wavelength_adjustment_workspaces = []
if wavelength_adjustment_file:
wavelength_correction_workspace_from_file = \
self._load_wavelength_correction_file(wavelength_adjustment_file)
wavelength_adjustment_workspaces.append(wavelength_correction_workspace_from_file)
# 2. Normalization
wavelength_adjustment_workspaces.append(monitor_normalization_workspace)
# 3. Transmission Calculation
if transmission_workspace:
wavelength_adjustment_workspaces.append(transmission_workspace)
# Multiply all workspaces
wavelength_adjustment_workspace = None
for workspace in wavelength_adjustment_workspaces:
# First we need to change the binning such that is matches the binning of the main data workspace
rebin_name = "Rebin"
rebin_options = {"InputWorkspace": workspace,
"Params": rebin_string,
"OutputWorkspace": EMPTY_NAME}
rebin_alg = create_unmanaged_algorithm(rebin_name, **rebin_options)
rebin_alg.execute()
rebinned_workspace = rebin_alg.getProperty("OutputWorkspace").value
if wavelength_adjustment_workspace is None:
wavelength_adjustment_workspace = rebinned_workspace
else:
multiply_name = "Multiply"
multiply_options = {"LHSWorkspace": rebinned_workspace,
"RHSWorkspace": wavelength_adjustment_workspace,
"OutputWorkspace": EMPTY_NAME}
multiply_alg = create_unmanaged_algorithm(multiply_name, **multiply_options)
multiply_alg.execute()
wavelength_adjustment_workspace = multiply_alg.getProperty("OutputWorkspace").value
return wavelength_adjustment_workspace
示例6: _compare_workspace
def _compare_workspace(self, workspace, reference_file_name):
# Load the reference file
load_name = "LoadNexusProcessed"
load_options = {"Filename": reference_file_name,
"OutputWorkspace": EMPTY_NAME}
load_alg = create_unmanaged_algorithm(load_name, **load_options)
load_alg.execute()
reference_workspace = load_alg.getProperty("OutputWorkspace").value
# Save the workspace out and reload it again. This equalizes it with the reference workspace
f_name = os.path.join(mantid.config.getString('defaultsave.directory'),
'SANS_temp_single_core_reduction_testout.nxs')
save_name = "SaveNexus"
save_options = {"Filename": f_name,
"InputWorkspace": workspace}
save_alg = create_unmanaged_algorithm(save_name, **save_options)
save_alg.execute()
load_alg.setProperty("Filename", f_name)
load_alg.setProperty("OutputWorkspace", EMPTY_NAME)
load_alg.execute()
ws = load_alg.getProperty("OutputWorkspace").value
# Compare reference file with the output_workspace
# We need to disable the instrument comparison, it takes way too long
# We need to disable the sample -- since the sample has been modified (more logs are being written)
# operation how many entries can be found in the sample logs
compare_name = "CompareWorkspaces"
compare_options = {"Workspace1": ws,
"Workspace2": reference_workspace,
"Tolerance": 1e-6,
"CheckInstrument": False,
"CheckSample": False,
"ToleranceRelErr": True,
"CheckAllData": True,
"CheckMasking": True,
"CheckType": True,
"CheckAxes": True,
"CheckSpectraMap": True}
compare_alg = create_unmanaged_algorithm(compare_name, **compare_options)
compare_alg.setChild(False)
compare_alg.execute()
result = compare_alg.getProperty("Result").value
message = compare_alg.getProperty("Messages").value
self.assertTrue(result, message)
# Remove file
if os.path.exists(f_name):
os.remove(f_name)
示例7: _apply_user_mask_ranges
def _apply_user_mask_ranges(self, cF, cR, nR, nF, merge_min, merge_max):
merge_max = self._check_bins(merge_min, merge_max, cF, cR)
mask_name = "MaskBins"
mask_options = {"InputWorkspace": cF}
mask_alg = create_unmanaged_algorithm(mask_name, **mask_options)
mask_alg.setProperty("InputWorkspace", cF)
mask_alg.setProperty("OutputWorkspace", EMPTY_NAME)
mask_alg.setProperty("XMin", min(cF.dataX(0)))
mask_alg.setProperty("XMax", merge_min)
mask_alg.execute()
cF = mask_alg.getProperty("OutputWorkspace").value
mask_alg.setProperty("InputWorkspace", nF)
mask_alg.setProperty("OutputWorkspace", EMPTY_NAME)
mask_alg.setProperty("XMin", min(nF.dataX(0)))
mask_alg.setProperty("XMax", merge_min)
mask_alg.execute()
nF = mask_alg.getProperty("OutputWorkspace").value
mask_alg.setProperty("InputWorkspace", cR)
mask_alg.setProperty("OutputWorkspace", EMPTY_NAME)
mask_alg.setProperty("XMin", merge_max)
mask_alg.setProperty("XMax", max(cR.dataX(0)))
mask_alg.execute()
cR = mask_alg.getProperty("OutputWorkspace").value
mask_alg.setProperty("InputWorkspace", nR)
mask_alg.setProperty("OutputWorkspace", EMPTY_NAME)
mask_alg.setProperty("XMin", merge_max)
mask_alg.setProperty("XMax", max(nR.dataX(0)))
mask_alg.execute()
nR = mask_alg.getProperty("OutputWorkspace").value
return cR, cF, nR, nF
示例8: _convert_to_wavelength
def _convert_to_wavelength(self, workspace, normalize_to_monitor_state):
"""
Converts the workspace from time-of-flight units to wavelength units
:param workspace: a time-of-flight workspace.
:param normalize_to_monitor_state: a SANSStateNormalizeToMonitor object.
:return: a wavelength workspace.
"""
wavelength_low = normalize_to_monitor_state.wavelength_low
wavelength_high = normalize_to_monitor_state.wavelength_high
wavelength_step = normalize_to_monitor_state.wavelength_step
wavelength_step_type = normalize_to_monitor_state.wavelength_step_type
wavelength_rebin_mode = normalize_to_monitor_state.rebin_type
convert_name = "SANSConvertToWavelengthAndRebin"
convert_options = {"InputWorkspace": workspace,
"WavelengthLow": wavelength_low,
"WavelengthHigh": wavelength_high,
"WavelengthStep": wavelength_step,
"WavelengthStepType": RangeStepType.to_string(wavelength_step_type),
"RebinMode": RebinType.to_string(wavelength_rebin_mode)}
convert_alg = create_unmanaged_algorithm(convert_name, **convert_options)
convert_alg.setPropertyValue("OutputWorkspace", EMPTY_NAME)
convert_alg.setProperty("OutputWorkspace", workspace)
convert_alg.execute()
return convert_alg.getProperty("OutputWorkspace").value
示例9: _perform_rebin
def _perform_rebin(self, rebin_type, rebin_options, workspace):
rebin_name = "Rebin" if rebin_type is RebinType.Rebin else "InterpolatingRebin"
rebin_alg = create_unmanaged_algorithm(rebin_name, **rebin_options)
rebin_alg.setPropertyValue("OutputWorkspace", EMPTY_NAME)
rebin_alg.setProperty("OutputWorkspace", workspace)
rebin_alg.execute()
return rebin_alg.getProperty("OutputWorkspace").value
示例10: _run_test
def _run_test(state, sample_data, sample_monitor_data, transmission_data, direct_data, is_lab=True, is_sample=True):
adjustment_name = "SANSCreateAdjustmentWorkspaces"
adjustment_options = {"SANSState": state,
"SampleData": sample_data,
"MonitorWorkspace": sample_monitor_data,
"TransmissionWorkspace": transmission_data,
"DirectWorkspace": direct_data,
"OutputWorkspaceWavelengthAdjustment": EMPTY_NAME,
"OutputWorkspacePixelAdjustment": EMPTY_NAME,
"OutputWorkspaceWavelengthAndPixelAdjustment": EMPTY_NAME}
if is_sample:
adjustment_options.update({"DataType": DataType.to_string(DataType.Sample)})
else:
adjustment_options.update({"DataType": DataType.to_string(DataType.Can)})
if is_lab:
adjustment_options.update({"Component": DetectorType.to_string(DetectorType.LAB)})
else:
adjustment_options.update({"Component": DetectorType.to_string(DetectorType.HAB)})
adjustment_alg = create_unmanaged_algorithm(adjustment_name, **adjustment_options)
adjustment_alg.execute()
wavelength_adjustment = adjustment_alg.getProperty("OutputWorkspaceWavelengthAdjustment").value
pixel_adjustment = adjustment_alg.getProperty("OutputWorkspacePixelAdjustment").value
wavelength_and_pixel_adjustment = adjustment_alg.getProperty(
"OutputWorkspaceWavelengthAndPixelAdjustment").value
calculated_transmission = adjustment_alg.getProperty("CalculatedTransmissionWorkspace").value
unfitted_transmission = adjustment_alg.getProperty("UnfittedTransmissionWorkspace").value
return wavelength_adjustment, pixel_adjustment, wavelength_and_pixel_adjustment,\
calculated_transmission, unfitted_transmission
示例11: rotate_component
def rotate_component(workspace, angle, direction, component_to_rotate):
"""
Rotate a component on a workspace.
:param workspace: the workspace which contains the component which is to be rotated.
:param angle: the angle by which it is to be rotated in degrees.
:param direction: the rotation direction. This is a unit vector encoded as a Coordinate vs Value map.
:param component_to_rotate: name of the component which is to be rotated
:return:
"""
rotate_name = "RotateInstrumentComponent"
rotate_options = {"Workspace": workspace,
"ComponentName": component_to_rotate,
"RelativeRotation": "1"}
for key, value in list(direction.items()):
if key is CanonicalCoordinates.X:
rotate_options.update({"X": value})
elif key is CanonicalCoordinates.Y:
rotate_options.update({"Y": value})
elif key is CanonicalCoordinates.Z:
rotate_options.update({"Z": value})
else:
raise RuntimeError("SANSMove: Trying to rotate the components along an unknown direction. "
"See here: {0}".format(str(component_to_rotate)))
rotate_options.update({"Angle": angle})
alg = create_unmanaged_algorithm(rotate_name, **rotate_options)
alg.execute()
示例12: _perform_prompt_peak_correction
def _perform_prompt_peak_correction(self, workspace, prompt_peak_correction_min, prompt_peak_correction_max,
prompt_peak_correction_enabled):
"""
Prompt peak correction is performed if it is explicitly set by the user.
:param workspace: the workspace to correct.
:param prompt_peak_correction_min: the start time for the prompt peak correction.
:param prompt_peak_correction_max: the stop time for the prompt peak correction.
:prompt_peak_correction_enabled: flag if prompt peak correction should be enabled
:return: a corrected workspace.
"""
# We perform only a prompt peak correction if the start and stop values of the bins we want to remove,
# were explicitly set. Some instruments require it, others don't.
if prompt_peak_correction_enabled and prompt_peak_correction_min is not None and \
prompt_peak_correction_max is not None: # noqa
remove_name = "RemoveBins"
remove_options = {"InputWorkspace": workspace,
"XMin": prompt_peak_correction_min,
"XMax": prompt_peak_correction_max,
"Interpolation": "Linear"}
remove_alg = create_unmanaged_algorithm(remove_name, **remove_options)
remove_alg.setPropertyValue("OutputWorkspace", EMPTY_NAME)
remove_alg.setProperty("OutputWorkspace", workspace)
remove_alg.execute()
workspace = remove_alg.getProperty("OutputWorkspace").value
return workspace
示例13: mask_cylinder
def mask_cylinder(mask_info, workspace):
"""
Masks a (hollow) cylinder around (0,0)
Two radii can be specified for the cylinder mask. An inner radius (radius_min) and an outer radius(radius_max)
which specify a hollow cylinder mask.
:param mask_info: a SANSStateMask object.
:param workspace: the workspace which is about to be masked
:return: the masked workspace.
"""
radius_min = mask_info.radius_min
radius_max = mask_info.radius_max
xml = []
# Set up the inner radius of the cylinder
if radius_min is not None and radius_min > 0.0:
add_cylinder(xml, radius_min, 0, 0, 'beam_stop')
# Set up the outer radius of the cylinder
if radius_max is not None and radius_max > 0.0:
add_outside_cylinder(xml, radius_max, 0, 0, 'beam_area')
# Mask the cylinder shape if there is anything to mask, else don't do anything
if xml:
mask_name = "MaskDetectorsInShape"
mask_options = {"Workspace": workspace}
mask_alg = create_unmanaged_algorithm(mask_name, **mask_options)
for shape in xml:
mask_alg.setProperty("Workspace", workspace)
mask_alg.setProperty("ShapeXML", shape)
mask_alg.execute()
workspace = mask_alg.getProperty("Workspace").value
return workspace
示例14: mask_beam_stop
def mask_beam_stop(mask_info, workspace, instrument, detector_names):
"""
The beam stop is being masked here.
:param mask_info: a SANSStateMask object.
:param workspace: the workspace which is to be masked.
:param instrument: the instrument associated with the current workspace.
:return: a masked workspace
"""
beam_stop_arm_width = mask_info.beam_stop_arm_width
beam_stop_arm_angle = mask_info.beam_stop_arm_angle
beam_stop_arm_pos1 = mask_info.beam_stop_arm_pos1
beam_stop_arm_pos2 = mask_info.beam_stop_arm_pos2
if beam_stop_arm_width is not None and beam_stop_arm_angle is not None:
detector = workspace.getInstrument().getComponentByName(detector_names['LAB'])
z_position = detector.getPos().getZ()
start_point = [beam_stop_arm_pos1, beam_stop_arm_pos2, z_position]
line_mask = create_line_mask(start_point, 100., beam_stop_arm_width, beam_stop_arm_angle)
mask_name = "MaskDetectorsInShape"
mask_options = {"Workspace": workspace,
"ShapeXML": line_mask}
mask_alg = create_unmanaged_algorithm(mask_name, **mask_options)
mask_alg.execute()
workspace = mask_alg.getProperty("Workspace").value
return workspace
示例15: mask_angle
def mask_angle(mask_info, workspace):
"""
Creates a pizza slice mask on the detector around (0,0)
:param mask_info: a SANSStateMask object
:param workspace: the workspace which is to be masked.
:return: a masked workspace
"""
phi_mirror = mask_info.use_mask_phi_mirror
phi_min = mask_info.phi_min
phi_max = mask_info.phi_max
if phi_min is not None and phi_max is not None and phi_mirror is not None:
# Check for edge cases for the mirror
if phi_mirror:
if phi_min > phi_max:
phi_min, phi_max = phi_max, phi_min
if phi_max - phi_min == 180.0:
phi_min = -90.0
phi_max = 90.0
# Create the phi mask and apply it if anything was created
phi_mask = create_phi_mask('unique phi', [0, 0, 0], phi_min, phi_max, phi_mirror)
if phi_mask:
mask_name = "MaskDetectorsInShape"
mask_options = {"Workspace": workspace,
"ShapeXML": phi_mask}
mask_alg = create_unmanaged_algorithm(mask_name, **mask_options)
mask_alg.execute()
workspace = mask_alg.getProperty("Workspace").value
return workspace