本文整理汇总了Python中sandbox.util.PathDefaults.PathDefaults.getOutputDir方法的典型用法代码示例。如果您正苦于以下问题:Python PathDefaults.getOutputDir方法的具体用法?Python PathDefaults.getOutputDir怎么用?Python PathDefaults.getOutputDir使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sandbox.util.PathDefaults.PathDefaults
的用法示例。
在下文中一共展示了PathDefaults.getOutputDir方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, YList, X, featuresName, ages, args):
super(MetabolomicsExpRunner, self).__init__(args=args)
self.X = X
self.YList = YList # The list of concentrations
self.featuresName = featuresName
self.args = args
self.ages = ages
self.maxDepth = 5
self.numTrees = 10
self.folds = 3
self.resultsDir = PathDefaults.getOutputDir() + "metabolomics/"
self.leafRankGenerators = []
# self.leafRankGenerators.append((SvcGS.generate(), "SVC"))
# self.leafRankGenerators.append((LinearSvmGS.generate(), "LinearSVM"))
self.leafRankGenerators.append((LinearSvmPca.generate(), "LinearSVM-PCA"))
self.funcLeafRankGenerators = []
# self.funcLeafRankGenerators.append((LinearSvmFGs.generate, "SVMF"))
# self.funcLeafRankGenerators.append((DecisionTreeF.generate, "CARTF"))
self.funcLeafRankGenerators.append((SvcFGs.generate, "SVCF"))
# Store all the label vectors and their missing values
YIgf1Inds, YICortisolInds, YTestoInds = MetabolomicsUtils.createIndicatorLabels(YList)
self.hormoneInds = [YIgf1Inds, YICortisolInds, YTestoInds]
self.hormoneNames = MetabolomicsUtils.getLabelNames()
示例2: __init__
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, maxIter=None, iterStartTimeStamp=None):
outputDir = PathDefaults.getOutputDir() + "recommend/erasm/"
if not os.path.exists(outputDir):
os.mkdir(outputDir)
#iterStartDate is the starting date of the iterator
if iterStartTimeStamp != None:
self.iterStartTimeStamp = iterStartTimeStamp
else:
self.iterStartTimeStamp = 1286229600
self.timeStep = timedelta(30).total_seconds()
self.ratingFileName = outputDir + "data.npz"
self.userDictFileName = outputDir + "userIdDict.pkl"
self.groupDictFileName = outputDir + "groupIdDict.pkl"
self.isTrainRatingsFileName = outputDir + "is_train.npz"
self.dataDir = PathDefaults.getDataDir() + "erasm/"
self.dataFileName = self.dataDir + "groupMembers-29-11-12"
self.maxIter = maxIter
self.trainSplit = 4.0/5
self.processRatings()
self.splitDataset()
self.loadProcessedData()
示例3: __init__
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, cmdLine=None, defaultAlgoArgs = None, dirName=""):
""" priority for default args
- best priority: command-line value
- middle priority: set-by-function value
- lower priority: class value
"""
# Parameters to choose which methods to run
# Obtained merging default parameters from the class with those from the user
self.algoArgs = RankingExpHelper.newAlgoParams(defaultAlgoArgs)
self.ps = [1, 3, 5]
#The max number of observations to use for model selection
self.sampleSize = 5*10**6
# basic resultsDir
self.resultsDir = PathDefaults.getOutputDir() + "ranking/" + dirName + "/"
#Create the results dir if it does not exist
# os.makedirs(resultsDir, exist_ok=True) # for python 3.2
try:
os.makedirs(self.resultsDir)
except OSError as err:
if err.errno != errno.EEXIST:
raise
# update algoParams from command line
self.readAlgoParams(cmdLine)
#Sometimes there are problems with multiprocessing, so this fixes the issues
os.system('taskset -p 0xffffffff %d' % os.getpid())
示例4: loadParams
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def loadParams(ind):
if processReal:
resultsDir = PathDefaults.getOutputDir() + "viroscopy/real/theta" + str(ind) + "/"
outputDir = resultsDir + "stats/"
N, matchAlpha, breakScale, numEpsilons, epsilon, minEpsilon, matchAlg, abcMaxRuns, batchSize, pertScale = HIVModelUtils.realABCParams(True)
startDate, endDate, recordStep, M, targetGraph, numInds = HIVModelUtils.realSimulationParams(test=True, ind=ind)
realTheta, sigmaTheta, pertTheta = HIVModelUtils.estimatedRealTheta(ind)
numInds=2
prefix = "Real"
else:
resultsDir = PathDefaults.getOutputDir() + "viroscopy/toy/theta/"
outputDir = resultsDir + "stats/"
N, matchAlpha, breakScale, numEpsilons, epsilon, minEpsilon, matchAlg, abcMaxRuns, batchSize, pertScale = HIVModelUtils.toyABCParams()
startDate, endDate, recordStep, M, targetGraph = HIVModelUtils.toySimulationParams(test=True)
realTheta, sigmaTheta, pertTheta = HIVModelUtils.toyTheta()
prefix = "Toy"
numInds = 1
breakSize = (targetGraph.subgraph(targetGraph.removedIndsAt(endDate)).size - targetGraph.subgraph(targetGraph.removedIndsAt(startDate)).size) * breakScale
return N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds
示例5: __init__
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, iteratorFunc, cmdLine=None, defaultAlgoArgs = None, dirName=""):
# Parameters to choose which methods to run
# Obtained merging default parameters from the class with those from the user
self.algoArgs = ClusterExpHelper.newAlgoParams(defaultAlgoArgs)
# Variables related to the dataset
self.getIteratorFunc = iteratorFunc
#How often to print output
self.logStep = 10
# basic resultsDir
self.resultsDir = PathDefaults.getOutputDir() + "cluster/" + dirName + "/"
# update algoParams from command line
self.readAlgoParams(cmdLine)
示例6: __init__
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, maxIter=None, iterStartTimeStamp=None):
"""
Return a training and test set for itemlens based on the time each
rating was made.
"""
self.timeStep = timedelta(30).total_seconds()
#iterStartDate is the starting date of the iterator
if iterStartTimeStamp != None:
self.iterStartTimeStamp = iterStartTimeStamp
else:
self.iterStartTimeStamp = time.mktime(datetime(2009,1,1).timetuple())
self.numItems = 1560144
#It says 13668319 on the site but that seems to be wrong
self.numRatings = 8196072
self.numCustomers = 71567
outputDir = PathDefaults.getOutputDir() + "recommend/Flixster/"
if not os.path.exists(outputDir):
os.mkdir(outputDir)
self.ratingFileName = outputDir + "data.npz"
self.custDictFileName = outputDir + "custIdDict.pkl"
self.itemDictFileName = outputDir + "itemIdDict.pkl"
self.isTrainRatingsFileName = outputDir + "is_train.npz"
self.maxIter = maxIter
self.trainSplit = 4.0/5
self.processRatings()
self.splitDataset()
self.loadProcessedData()
if self.maxIter != None:
logging.debug("Maximum number of iterations: " + str(self.maxIter))
示例7: rc
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
from matplotlib import rc
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
rc('text', usetex=True)
from sandbox.util.PathDefaults import PathDefaults
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
#For now just print some results for a particular dataset
#dataset = "MovieLensDataset"
dataset = "NetflixDataset"
#dataset = "FlixsterDataset"
#dataset = "SyntheticDataset1"
#dataset = "EpinionsDataset"
outputDir = PathDefaults.getOutputDir() + "recommend/" + dataset + "/"
plotStyles = ['k-', 'k--', 'k-.', 'r--', 'r-', 'g-', 'b-', 'b--', 'b-.', 'g--', 'g--', 'g-.', 'r-', 'r--', 'r-.']
methods = ["propack", "arpack", "rsvd", "rsvdUpdate2"]
updateAlgs = ["initial", "zero"]
#pq = [(10, 2), (50, 2), (10, 5)]
pq = [(10, 3), (50, 2), (50, 3)]
#fileNames = [outputDir + "ResultsSgdMf.npz"]
#labels = ["SgdMf"]
fileNames = []
labels = []
consise = True
for method in methods:
示例8: IterativeSoftImpute
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
minContacts = 3
minAcceptableSims = 3
maxIterations = 30
alpha = 0.2
numProcesses = 2
modelSelectSamples = 10**6
modelSelect = args.modelSelect
folds = 3
ks = numpy.array([64, 128, 256])
rhosSi = numpy.linspace(1.0, 0.0, 5)
overwrite = args.overwrite
datasets = ["Keyword", "Document"]
resultsDir = PathDefaults.getOutputDir() + "coauthors/"
contactsFilename = PathDefaults.getDataDir() + "reference/contacts_anonymised.tsv"
interestsFilename = PathDefaults.getDataDir() + "reference/author_interest"
#Create all the recommendation algorithms
softImpute = IterativeSoftImpute(k=k, postProcess=True, svdAlg="rsvd")
softImpute.maxIterations = maxIterations
softImpute.metric = "f1"
softImpute.q = 3
softImpute.p = 10
softImpute.rho = 0.1
softImpute.eps = 10**-4
softImpute.numProcesses = args.processes
wrmf = WeightedMf(k=k, maxIterations=maxIterations, alpha=1.0)
示例9: len
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
"""
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
numpy.random.seed(21)
numpy.set_printoptions(precision=4, suppress=True, linewidth=150)
#numpy.seterr(all="raise")
if len(sys.argv) > 1:
dataset = sys.argv[1]
else:
dataset = "synthetic"
saveResults = True
prefix = "LossROC"
outputFile = PathDefaults.getOutputDir() + "ranking/" + prefix + dataset.title() + "Results.npz"
X = DatasetUtils.getDataset(dataset, nnz=20000)
m, n = X.shape
u = 0.1
w = 1-u
testSize = 5
folds = 5
trainTestXs = Sampling.shuffleSplitRows(X, folds, testSize)
numRecordAucSamples = 200
k2 = 8
u2 = 0.5
w2 = 1-u2
示例10: HIVGraphReader
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
from apgl.viroscopy.HIVGraphReader import HIVGraphReader
"""
This script computes some basic statistics on the growing infection graph.
"""
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
numpy.set_printoptions(suppress=True, linewidth=100, precision=3)
undirected = False
hivReader = HIVGraphReader()
graph = hivReader.readHIVGraph(undirected, indicators=False)
fInds = hivReader.getNonIndicatorFeatureIndices()
figureDir = PathDefaults.getOutputDir() + "viroscopy/figures/infect/"
resultsDir = PathDefaults.getOutputDir() + "viroscopy/"
#The set of edges indexed by zeros is the contact graph
#The ones indexed by 1 is the infection graph
edgeTypeIndex1 = 0
edgeTypeIndex2 = 1
sGraphContact = graph.getSparseGraph(edgeTypeIndex1)
sGraphInfect = graph.getSparseGraph(edgeTypeIndex2)
sGraph = sGraphInfect
#sGraph = sGraph.subgraph(range(0, 500))
graphStats = GraphStatistics()
statsArray = graphStats.scalarStatistics(sGraph, False)
slowStats = True
示例11: getIterator
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
plotHIV = False
plotCitation = False
plotBemol = True
saveResults = False
findEigs = False
if plotHIV:
def getIterator():
generator = HIVIterGenerator()
return generator.getIterator()
resultsDir = PathDefaults.getOutputDir() + "cluster/HIV/Stats/"
if plotCitation:
def getIterator():
maxGraphSize = None
generator = CitationIterGenerator(maxGraphSize=maxGraphSize)
return generator.getIterator()
resultsDir = PathDefaults.getOutputDir() + "cluster/Citation/Stats/"
if plotBemol:
def getIterator():
dataDir = PathDefaults.getDataDir() + "cluster/"
nbUser = 10000 # set to 'None' to have all users
nbPurchasesPerIt = 500 # set to 'None' to take all the purchases per date
示例12: list
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
#The set of edges indexed by zeros is the contact graph
#The ones indexed by 1 is the infection graph
edgeTypeIndex1 = 0
edgeTypeIndex2 = 1
sGraphContact = graph.getSparseGraph(edgeTypeIndex1)
sGraphInfect = graph.getSparseGraph(edgeTypeIndex2)
sGraphContact = sGraphContact.union(sGraphInfect)
graph = sGraphContact
#Find max component
components = graph.findConnectedComponents()
graph = graph.subgraph(list(components[0]))
logging.debug(graph)
resultsDir = PathDefaults.getOutputDir() + "cluster/"
detectionIndex = fInds["detectDate"]
vertexArray = graph.getVertexList().getVertices()
detections = vertexArray[:, detectionIndex]
startYear = 1900
daysInMonth = 30
monthStep = 1
dayList = list(range(int(numpy.min(detections)), int(numpy.max(detections)), daysInMonth*monthStep))
dayList.append(numpy.max(detections))
subgraphIndicesList = []
minGraphSize = 150
maxGraphSize = 500
示例13: __init__
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, k=500, additionalFields=[], runLSI=True, knownAuthors=False):
numpy.random.seed(21)
self.runLSI = runLSI
self.dataDir = PathDefaults.getDataDir() + "reputation/"
self.outputDir = PathDefaults.getOutputDir() + "reputation/"
self.fields = ["Boosting", "Computer Vision", "Cryptography", "Data Mining"]
self.fields.extend(["Information Extraction", "Intelligent Agents", "Machine Learning"])
self.fields.extend(["Natural Language Processing", "Neural Networks", "Ontology Alignment"])
self.fields.extend(["Planning", "Semantic Web", "Support Vector Machine"])
#self.fields.extend(["Planning", "Semantic Web"])
self.fields.extend(additionalFields)
self.dataFilename = self.dataDir + "DBLP-citation-Feb21.txt"
#self.dataFilename = self.dataDir + "DBLP-citation-7000000.txt"
#self.dataFilename = self.dataDir + "DBLP-citation-100000.txt"
#This option is true if we have a data file which lists authors within each field
self.knownAuthors = knownAuthors
for field in self.fields:
if not os.path.exists(self.getOutputFieldDir(field)):
os.mkdir(self.getOutputFieldDir(field))
if runLSI:
self.methodName = "LSI"
else:
self.methodName = "LDA"
self.authorListFilename = self.outputDir + "authorList" + self.methodName +".pkl"
self.citationListFilename = self.outputDir + "citationList" + self.methodName +".pkl"
self.vectoriserFilename = self.outputDir + "vectoriser" + self.methodName +".pkl"
self.modelFilename = self.outputDir + "model" + self.methodName + ".pkl"
self.docTermMatrixFilename = self.outputDir + "termDocMatrix" + self.methodName
self.indexFilename = self.outputDir + "index" + self.methodName
self.coverageFilename = self.outputDir + "meanCoverages" + self.methodName + ".npy"
self.relevantDocsFilename = self.outputDir + "relevantDocs" + self.methodName + ".npy"
self.stepSize = 1000000
self.numLines = 15192085
self.matchCutoff = 1.0
#Params for finding relevant authors
self.gamma = 1.3
self.maxRelevantAuthors = 500
self.maxRelevantAuthorsMult = 10
self.printPossibleMatches = False
self.gammas = numpy.arange(1.0, 2, 0.1)
self.minExpertArticles = 2
#Params for vectoriser
self.numFeatures = 500000
self.binary = True
self.sublinearTf = False
self.minDf = 10**-4
self.ngram = 2
self.minDfs = [10**-3, 10**-4, 10**-5]
logging.debug("Limiting BOW/TFIDF features to " + str(self.numFeatures))
#params for LSI
self.k = k
self.q = 3
self.p = 30
self.ks = [100, 200, 300, 400, 500, 600]
self.sampleDocs = 1000000
self.overwriteGraph = True
self.overwriteVectoriser = True
self.overwriteModel = True
self.chunksize = 2000
self.tfidf = runLSI
#Load the complete set of experts
self.expertsDict = {}
for field in self.fields:
expertsFile = open(self.getDataFieldDir(field) + "matched_experts.txt")
self.expertsDict[field] = expertsFile.readlines()
self.expertsDict[field] = set([x.strip() for x in self.expertsDict[field]])
expertsFile.close()
#Create a set of experts we use for training
self.trainExpertDict = {}
self.testExpertDict = {}
for field in self.fields:
inds = numpy.random.permutation(len(self.expertsDict[field]))
numTrainInds = int(0.5*len(self.expertsDict[field]))
trainInds = inds[0:numTrainInds]
self.trainExpertDict[field] = list(numpy.array(list(self.expertsDict[field]))[trainInds])
testInds = inds[numTrainInds:]
self.testExpertDict[field] = list(numpy.array(list(self.expertsDict[field]))[testInds])
示例14: runToyExp
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def runToyExp(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, numProcesses, fileNameSuffix):
dataDir = PathDefaults.getDataDir() + "modelPenalisation/toy/"
outputDir = PathDefaults.getOutputDir() + "modelPenalisation/"
svm = LibSVM()
numCs = svm.getCs().shape[0]
numGammas = svm.getGammas().shape[0]
numMethods = 1+(1+cvScalings.shape[0])
numParams = 2
runIdeal = True
runCv = True
runVfpen = True
for i in range(len(datasetNames)):
datasetName = datasetNames[i][0]
numRealisations = datasetNames[i][1]
logging.debug("Learning using dataset " + datasetName)
for s in range(len(sampleMethods)):
sampleMethod = sampleMethods[s][1]
outfileName = outputDir + datasetName + sampleMethods[s][0] + fileNameSuffix
fileLock = FileLock(outfileName + ".npz")
if not fileLock.isLocked() and not fileLock.fileExists():
fileLock.lock()
errors = numpy.zeros((numRealisations, len(sampleSizes), foldsSet.shape[0], numMethods))
params = numpy.zeros((numRealisations, len(sampleSizes), foldsSet.shape[0], numMethods, numParams))
errorGrids = numpy.zeros((numRealisations, len(sampleSizes), foldsSet.shape[0], numMethods, numCs, numGammas))
approxGrids = numpy.zeros((numRealisations, len(sampleSizes), foldsSet.shape[0], numMethods, numCs, numGammas))
idealGrids = numpy.zeros((numRealisations, len(sampleSizes), foldsSet.shape[0], numCs, numGammas))
data = numpy.load(dataDir + datasetName + ".npz")
gridPoints, trainX, trainY, pdfX, pdfY1X, pdfYminus1X = data["arr_0"], data["arr_1"], data["arr_2"], data["arr_3"], data["arr_4"], data["arr_5"]
#We form a test set from the grid points
testX = numpy.zeros((gridPoints.shape[0]**2, 2))
for m in range(gridPoints.shape[0]):
testX[m*gridPoints.shape[0]:(m+1)*gridPoints.shape[0], 0] = gridPoints
testX[m*gridPoints.shape[0]:(m+1)*gridPoints.shape[0], 1] = gridPoints[m]
for j in range(numRealisations):
Util.printIteration(j, 1, numRealisations, "Realisation: ")
for k in range(sampleSizes.shape[0]):
sampleSize = sampleSizes[k]
for m in range(foldsSet.shape[0]):
folds = foldsSet[m]
logging.debug("Using sample size " + str(sampleSize) + " and " + str(folds) + " folds")
perm = numpy.random.permutation(trainX.shape[0])
trainInds = perm[0:sampleSize]
validX = trainX[trainInds, :]
validY = trainY[trainInds]
svm = LibSVM(processes=numProcesses)
#Find ideal penalties
if runIdeal:
logging.debug("Finding ideal grid of penalties")
idealGrids[j, k, m, :, :] = parallelPenaltyGridRbf(svm, validX, validY, testX, gridPoints, pdfX, pdfY1X, pdfYminus1X)
#Cross validation
if runCv:
logging.debug("Running V-fold cross validation")
methodInd = 0
idx = sampleMethod(folds, validY.shape[0])
if sampleMethod == Sampling.bootstrap:
bootstrap = True
else:
bootstrap = False
bestSVM, cvGrid = svm.parallelVfcvRbf(validX, validY, idx, True, bootstrap)
predY, decisionsY = bestSVM.predict(testX, True)
decisionGrid = numpy.reshape(decisionsY, (gridPoints.shape[0], gridPoints.shape[0]), order="F")
errors[j, k, m, methodInd] = ModelSelectUtils.bayesError(gridPoints, decisionGrid, pdfX, pdfY1X, pdfYminus1X)
params[j, k, m, methodInd, :] = numpy.array([bestSVM.getC(), bestSVM.getKernelParams()])
errorGrids[j, k, m, methodInd, :, :] = cvGrid
#v fold penalisation
if runVfpen:
logging.debug("Running penalisation")
#BIC penalisation
Cv = float((folds-1) * numpy.log(validX.shape[0])/2)
tempCvScalings = cvScalings*(folds-1)
tempCvScalings = numpy.insert(tempCvScalings, 0, Cv)
#Use cross validation
idx = sampleMethod(folds, validY.shape[0])
svmGridResults = svm.parallelVfPenRbf(validX, validY, idx, tempCvScalings)
for n in range(len(tempCvScalings)):
bestSVM, trainErrors, approxGrid = svmGridResults[n]
methodInd = n+1
predY, decisionsY = bestSVM.predict(testX, True)
decisionGrid = numpy.reshape(decisionsY, (gridPoints.shape[0], gridPoints.shape[0]), order="F")
errors[j, k, m, methodInd] = ModelSelectUtils.bayesError(gridPoints, decisionGrid, pdfX, pdfY1X, pdfYminus1X)
params[j, k, m, methodInd, :] = numpy.array([bestSVM.getC(), bestSVM.getKernelParams()])
errorGrids[j, k, m, methodInd, :, :] = trainErrors + approxGrid
approxGrids[j, k, m, methodInd, :, :] = approxGrid
#.........这里部分代码省略.........
示例15: MetabolomicsUtils
# 需要导入模块: from sandbox.util.PathDefaults import PathDefaults [as 别名]
# 或者: from sandbox.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
import sys
import numpy
import logging
import datetime
import matplotlib
matplotlib.use("GTK3Agg")
import matplotlib.pyplot as plt
from sandbox.util.PathDefaults import PathDefaults
from sandbox.util.Latex import Latex
from wallhack.metabolomics.MetabolomicsUtils import MetabolomicsUtils
from wallhack.metabolomics.MetabolomicsExpHelper import MetabolomicsExpHelper
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
numpy.set_printoptions(suppress=True, precision=3)
resultsDir = PathDefaults.getOutputDir() + "metabolomics/"
figureDir = resultsDir + "Figures/"
metaUtils = MetabolomicsUtils()
X, XStd, X2, (XoplsCortisol, XoplsTesto, XoplsIgf1), YCortisol, YTesto, YIgf1, ages = metaUtils.loadData()
dataDict = {}
numpy.random.seed(datetime.datetime.now().microsecond)
helper = MetabolomicsExpHelper(dataDict, YCortisol, YTesto, YIgf1, ages)
dataNames =[]
dataNames.extend(["raw", "pca", "Db4", "Db8", "Haar"])
#algorithms = ["CartTreeRank", "CartTreeRankForest", "L1SvmTreeRank", "L1SvmTreeRankForest", "RbfSvmTreeRank", "RbfSvmTreeRankForest", "RankBoost", "RankSVM"]
algorithms = ["CartTreeRankForest", "L1SvmTreeRankForest", "RbfSvmTreeRankForest", "RankBoost", "RankSVM"]
algorithmsAbbr = ["CART-TRF", "L1-TRF", "RBF-TRF", "RB", "RSVM"]
hormoneNameIndicators = []