当前位置: 首页>>代码示例>>Python>>正文


Python LayersPowered.__init__方法代码示例

本文整理汇总了Python中sandbox.rocky.tf.core.layers_powered.LayersPowered.__init__方法的典型用法代码示例。如果您正苦于以下问题:Python LayersPowered.__init__方法的具体用法?Python LayersPowered.__init__怎么用?Python LayersPowered.__init__使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.rocky.tf.core.layers_powered.LayersPowered的用法示例。


在下文中一共展示了LayersPowered.__init__方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.relu,
            action_merge_layer=-2,
            output_nonlinearity=None,
            bn=False):
        Serializable.quick_init(self, locals())

        l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim), name="obs")
        l_action = L.InputLayer(shape=(None, env_spec.action_space.flat_dim), name="actions")

        n_layers = len(hidden_sizes) + 1

        if n_layers > 1:
            action_merge_layer = \
                (action_merge_layer % n_layers + n_layers) % n_layers
        else:
            action_merge_layer = 1

        l_hidden = l_obs

        for idx, size in enumerate(hidden_sizes):
            if bn:
                l_hidden = batch_norm(l_hidden)

            if idx == action_merge_layer:
                l_hidden = L.ConcatLayer([l_hidden, l_action])

            l_hidden = L.DenseLayer(
                l_hidden,
                num_units=size,
                nonlinearity=hidden_nonlinearity,
                name="h%d" % (idx + 1)
            )

        if action_merge_layer == n_layers:
            l_hidden = L.ConcatLayer([l_hidden, l_action])

        l_output = L.DenseLayer(
            l_hidden,
            num_units=1,
            nonlinearity=output_nonlinearity,
            name="output"
        )

        output_var = L.get_output(l_output, deterministic=True)

        self._f_qval = tensor_utils.compile_function([l_obs.input_var, l_action.input_var], output_var)
        self._output_layer = l_output
        self._obs_layer = l_obs
        self._action_layer = l_action
        self._output_nonlinearity = output_nonlinearity

        LayersPowered.__init__(self, [l_output])
开发者ID:andrewliao11,项目名称:rllab,代码行数:58,代码来源:continuous_mlp_q_function.py

示例2: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            env_spec,
            conv_filters, conv_filter_sizes, conv_strides, conv_pads,
            hidden_sizes=[],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.softmax,
            prob_network=None,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param prob_network: manually specified network for this policy, other network params
        are ignored
        :return:
        """
        Serializable.quick_init(self, locals())

        assert isinstance(env_spec.action_space, Discrete)

        self._env_spec = env_spec
        # import pdb; pdb.set_trace()
        if prob_network is None:
            prob_network = ConvNetwork(
                input_shape=env_spec.observation_space.shape,
                output_dim=env_spec.action_space.n,
                conv_filters=conv_filters,
                conv_filter_sizes=conv_filter_sizes,
                conv_strides=conv_strides,
                conv_pads=conv_pads,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
                name="prob_network",
            )

        self._l_prob = prob_network.output_layer
        self._l_obs = prob_network.input_layer
        self._f_prob = tensor_utils.compile_function(
            [prob_network.input_layer.input_var],
            L.get_output(prob_network.output_layer)
        )

        self._dist = Categorical(env_spec.action_space.n)

        super(CategoricalConvPolicy, self).__init__(env_spec)
        LayersPowered.__init__(self, [prob_network.output_layer])
开发者ID:andrewliao11,项目名称:rllab,代码行数:51,代码来源:categorical_conv_policy.py

示例3: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(self, name, output_dim, hidden_sizes, hidden_nonlinearity,
                 output_nonlinearity, hidden_W_init=L.XavierUniformInitializer(), hidden_b_init=tf.zeros_initializer,
                 output_W_init=L.XavierUniformInitializer(), output_b_init=tf.zeros_initializer,
                 input_var=None, input_layer=None, input_shape=None, batch_normalization=False, weight_normalization=False,
                 ):

        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):
            if input_layer is None:
                l_in = L.InputLayer(shape=(None,) + input_shape, input_var=input_var, name="input")
            else:
                l_in = input_layer
            self._layers = [l_in]
            l_hid = l_in
            if batch_normalization:
                l_hid = L.batch_norm(l_hid)
            for idx, hidden_size in enumerate(hidden_sizes):
                l_hid = L.DenseLayer(
                    l_hid,
                    num_units=hidden_size,
                    nonlinearity=hidden_nonlinearity,
                    name="hidden_%d" % idx,
                    W=hidden_W_init,
                    b=hidden_b_init,
                    weight_normalization=weight_normalization
                )
                if batch_normalization:
                    l_hid = L.batch_norm(l_hid)
                self._layers.append(l_hid)
            l_out = L.DenseLayer(
                l_hid,
                num_units=output_dim,
                nonlinearity=output_nonlinearity,
                name="output",
                W=output_W_init,
                b=output_b_init,
                weight_normalization=weight_normalization
            )
            if batch_normalization:
                l_out = L.batch_norm(l_out)
            self._layers.append(l_out)
            self._l_in = l_in
            self._l_out = l_out
            # self._input_var = l_in.input_var
            self._output = L.get_output(l_out)

            LayersPowered.__init__(self, l_out)
开发者ID:QuantCollective,项目名称:maml_rl,代码行数:50,代码来源:network.py

示例4: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            prob_network=None,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param prob_network: manually specified network for this policy, other network params
        are ignored
        :return:
        """
        Serializable.quick_init(self, locals())

        assert isinstance(env_spec.action_space, Discrete)

        with tf.variable_scope(name):
            if prob_network is None:
                prob_network = MLP(
                    input_shape=(env_spec.observation_space.flat_dim,),
                    output_dim=env_spec.action_space.n,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=tf.nn.softmax,
                    name="prob_network",
                )

            self._l_prob = prob_network.output_layer
            self._l_obs = prob_network.input_layer
            self._f_prob = tensor_utils.compile_function(
                [prob_network.input_layer.input_var],
                L.get_output(prob_network.output_layer)
            )

            self._dist = Categorical(env_spec.action_space.n)

            super(CategoricalMLPPolicy, self).__init__(env_spec)
            LayersPowered.__init__(self, [prob_network.output_layer])
开发者ID:QuantCollective,项目名称:maml_rl,代码行数:44,代码来源:categorical_mlp_policy.py

示例5: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh,
            prob_network=None,
            bn=False):
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):
            if prob_network is None:
                prob_network = MLP(
                    input_shape=(env_spec.observation_space.flat_dim,),
                    output_dim=env_spec.action_space.flat_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                    # batch_normalization=True,
                    name="prob_network",
                )

            self._l_prob = prob_network.output_layer
            self._l_obs = prob_network.input_layer
            self._f_prob = tensor_utils.compile_function(
                [prob_network.input_layer.input_var],
                L.get_output(prob_network.output_layer, deterministic=True)
            )

        self.prob_network = prob_network

        # Note the deterministic=True argument. It makes sure that when getting
        # actions from single observations, we do not update params in the
        # batch normalization layers.
        # TODO: this doesn't currently work properly in the tf version so we leave out batch_norm
        super(DeterministicMLPPolicy, self).__init__(env_spec)
        LayersPowered.__init__(self, [prob_network.output_layer])
开发者ID:andrewliao11,项目名称:rllab,代码行数:40,代码来源:deterministic_mlp_policy.py

示例6: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            env_spec,
            hidden_dim=32,
            feature_network=None,
            state_include_action=True,
            hidden_nonlinearity=tf.tanh,
            learn_std=True,
            init_std=1.0,
            output_nonlinearity=None,
    ):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        with tf.variable_scope(name):
            Serializable.quick_init(self, locals())
            super(GaussianGRUPolicy, self).__init__(env_spec)

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim

            l_input = L.InputLayer(
                shape=(None, None, input_dim),
                name="input"
            )

            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name="reshape_feature",
                    op=lambda flat_feature, input: tf.reshape(
                        flat_feature,
                        tf.pack([tf.shape(input)[0], tf.shape(input)[1], feature_dim])
                    ),
                    shape_op=lambda _, input_shape: (input_shape[0], input_shape[1], feature_dim)
                )

            mean_network = GRUNetwork(
                input_shape=(feature_dim,),
                input_layer=l_feature,
                output_dim=action_dim,
                hidden_dim=hidden_dim,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
                name="mean_network"
            )

            l_log_std = L.ParamLayer(
                mean_network.input_layer,
                num_units=action_dim,
                param=tf.constant_initializer(np.log(init_std)),
                name="output_log_std",
                trainable=learn_std,
            )

            l_step_log_std = L.ParamLayer(
                mean_network.step_input_layer,
                num_units=action_dim,
                param=l_log_std.param,
                name="step_output_log_std",
                trainable=learn_std,
            )

            self.mean_network = mean_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action

            flat_input_var = tf.placeholder(dtype=tf.float32, shape=(None, input_dim), name="flat_input")
            if feature_network is None:
                feature_var = flat_input_var
            else:
                feature_var = L.get_output(l_flat_feature, {feature_network.input_layer: flat_input_var})

            self.f_step_mean_std = tensor_utils.compile_function(
                [
                    flat_input_var,
                    mean_network.step_prev_hidden_layer.input_var,
                ],
                L.get_output([
                    mean_network.step_output_layer,
                    l_step_log_std,
                    mean_network.step_hidden_layer,
                ], {mean_network.step_input_layer: feature_var})
#.........这里部分代码省略.........
开发者ID:flyers,项目名称:rllab,代码行数:103,代码来源:gaussian_gru_policy.py

示例7: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            env_spec,
            hidden_dim=32,
            feature_network=None,
            prob_network=None,
            state_include_action=True,
            hidden_nonlinearity=tf.tanh,
            forget_bias=1.0,
            use_peepholes=False):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        with tf.variable_scope(name):
            assert isinstance(env_spec.action_space, Discrete)
            Serializable.quick_init(self, locals())
            super(CategoricalLSTMPolicy, self).__init__(env_spec)

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim

            l_input = L.InputLayer(
                shape=(None, None, input_dim),
                name="input"
            )

            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name="reshape_feature",
                    op=lambda flat_feature, input: tf.reshape(
                        flat_feature,
                        tf.pack([tf.shape(input)[0], tf.shape(input)[1], feature_dim])
                    ),
                    shape_op=lambda _, input_shape: (input_shape[0], input_shape[1], feature_dim)
                )

            if prob_network is None:
                prob_network = LSTMNetwork(
                    input_shape=(feature_dim,),
                    input_layer=l_feature,
                    output_dim=env_spec.action_space.n,
                    hidden_dim=hidden_dim,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=tf.nn.softmax,
                    forget_bias=forget_bias,
                    use_peepholes=use_peepholes,
                    name="prob_network"
                )

            self.prob_network = prob_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action

            flat_input_var = tf.placeholder(dtype=tf.float32, shape=(None, input_dim), name="flat_input")
            if feature_network is None:
                feature_var = flat_input_var
            else:
                feature_var = L.get_output(l_flat_feature, {feature_network.input_layer: flat_input_var})

            self.f_step_prob = tensor_utils.compile_function(
                [
                    flat_input_var,
                    prob_network.step_prev_hidden_layer.input_var,
                    prob_network.step_prev_cell_layer.input_var
                ],
                L.get_output([
                    prob_network.step_output_layer,
                    prob_network.step_hidden_layer,
                    prob_network.step_cell_layer
                ], {prob_network.step_input_layer: feature_var})
            )

            self.input_dim = input_dim
            self.action_dim = action_dim
            self.hidden_dim = hidden_dim

            self.prev_actions = None
            self.prev_hiddens = None
            self.prev_cells = None
            self.dist = RecurrentCategorical(env_spec.action_space.n)

            out_layers = [prob_network.output_layer]
#.........这里部分代码省略.........
开发者ID:flyers,项目名称:rllab,代码行数:103,代码来源:categorical_lstm_policy.py

示例8: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            input_shape,
            output_dim,
            prob_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            optimizer=None,
            tr_optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            normalize_inputs=True,
            no_initial_trust_region=True,
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):
            if optimizer is None:
                optimizer = LbfgsOptimizer(name="optimizer")
            if tr_optimizer is None:
                tr_optimizer = ConjugateGradientOptimizer()

            self.output_dim = output_dim
            self.optimizer = optimizer
            self.tr_optimizer = tr_optimizer

            if prob_network is None:
                prob_network = MLP(
                    input_shape=input_shape,
                    output_dim=output_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=tf.nn.softmax,
                    name="prob_network"
                )

            l_prob = prob_network.output_layer

            LayersPowered.__init__(self, [l_prob])

            xs_var = prob_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32, shape=[None, output_dim], name="ys")
            old_prob_var = tf.placeholder(dtype=tf.float32, shape=[None, output_dim], name="old_prob")

            x_mean_var = tf.get_variable(
                name="x_mean",
                shape=(1,) + input_shape,
                initializer=tf.constant_initializer(0., dtype=tf.float32)
            )
            x_std_var = tf.get_variable(
                name="x_std",
                shape=(1,) + input_shape,
                initializer=tf.constant_initializer(1., dtype=tf.float32)
            )

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var

            prob_var = L.get_output(l_prob, {prob_network.input_layer: normalized_xs_var})

            old_info_vars = dict(prob=old_prob_var)
            info_vars = dict(prob=prob_var)

            dist = self._dist = Categorical(output_dim)

            mean_kl = tf.reduce_mean(dist.kl_sym(old_info_vars, info_vars))

            loss = - tf.reduce_mean(dist.log_likelihood_sym(ys_var, info_vars))

            predicted = tensor_utils.to_onehot_sym(tf.argmax(prob_var, dimension=1), output_dim)

            self.prob_network = prob_network
            self.f_predict = tensor_utils.compile_function([xs_var], predicted)
            self.f_prob = tensor_utils.compile_function([xs_var], prob_var)
            self.l_prob = l_prob

            self.optimizer.update_opt(loss=loss, target=self, network_outputs=[prob_var], inputs=[xs_var, ys_var])
            self.tr_optimizer.update_opt(loss=loss, target=self, network_outputs=[prob_var],
                                         inputs=[xs_var, ys_var, old_prob_var],
                                         leq_constraint=(mean_kl, step_size)
                                         )

            self.use_trust_region = use_trust_region
            self.name = name

            self.normalize_inputs = normalize_inputs
            self.x_mean_var = x_mean_var
            self.x_std_var = x_std_var
            self.first_optimized = not no_initial_trust_region
开发者ID:flyers,项目名称:rllab,代码行数:100,代码来源:categorical_mlp_regressor.py

示例9: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            input_shape,
            output_dim,
            mean_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            std_nonlinearity=None,
            normalize_inputs=True,
            normalize_outputs=True,
            subsample_factor=1.0
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If
        adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned.
        :param adaptive_std: Whether to make the std a function of the states.
        :param std_share_network: Whether to use the same network as the mean.
        :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if
        `std_share_network` is False. It defaults to the same architecture as the mean.
        :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network`
        is False. It defaults to the same non-linearity as the mean.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                if use_trust_region:
                    optimizer = PenaltyLbfgsOptimizer("optimizer")
                else:
                    optimizer = LbfgsOptimizer("optimizer")

            self._optimizer = optimizer
            self._subsample_factor = subsample_factor

            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=input_shape,
                    output_dim=output_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=None,
                )

            l_mean = mean_network.output_layer

            if adaptive_std:
                l_log_std = MLP(
                    name="log_std_network",
                    input_shape=input_shape,
                    input_var=mean_network.input_layer.input_var,
                    output_dim=output_dim,
                    hidden_sizes=std_hidden_sizes,
                    hidden_nonlinearity=std_nonlinearity,
                    output_nonlinearity=None,
                ).output_layer
            else:
                l_log_std = L.ParamLayer(
                    mean_network.input_layer,
                    num_units=output_dim,
                    param=tf.constant_initializer(np.log(init_std)),
                    name="output_log_std",
                    trainable=learn_std,
                )

            LayersPowered.__init__(self, [l_mean, l_log_std])

            xs_var = mean_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32, name="ys", shape=(None, output_dim))
            old_means_var = tf.placeholder(dtype=tf.float32, name="ys", shape=(None, output_dim))
            old_log_stds_var = tf.placeholder(dtype=tf.float32, name="old_log_stds", shape=(None, output_dim))

            x_mean_var = tf.Variable(
                np.zeros((1,) + input_shape, dtype=np.float32),
                name="x_mean",
            )
            x_std_var = tf.Variable(
                np.ones((1,) + input_shape, dtype=np.float32),
                name="x_std",
            )
            y_mean_var = tf.Variable(
                np.zeros((1, output_dim), dtype=np.float32),
                name="y_mean",
#.........这里部分代码省略.........
开发者ID:QuantCollective,项目名称:maml_rl,代码行数:103,代码来源:gaussian_mlp_regressor.py

示例10: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            min_std=1e-6,
            std_hidden_nonlinearity=tf.nn.tanh,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
            mean_network=None,
            std_network=None,
            std_parametrization='exp',
            # added arguments
            w_auxiliary=False,
            auxliary_classes=0.,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        with tf.variable_scope(name):

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            # create network
            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=(obs_dim,),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                    w_auxiliary=w_auxiliary,
                    auxliary_classes=auxliary_classes,
                )
            self._mean_network = mean_network

            l_mean = mean_network.output_layer
            obs_var = mean_network.input_layer.input_var

            if std_network is not None:
                l_std_param = std_network.output_layer
            else:
                if adaptive_std:
                    std_network = MLP(
                        name="std_network",
                        input_shape=(obs_dim,),
                        input_layer=mean_network.input_layer,
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=None,
                    )
                    l_std_param = std_network.output_layer
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    l_std_param = L.ParamLayer(
                        mean_network.input_layer,
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
#.........这里部分代码省略.........
开发者ID:andrewliao11,项目名称:rllab,代码行数:103,代码来源:gaussian_mlp_policy.py

示例11: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            input_shape,
            output_dim,
            network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
            optimizer=None,
            normalize_inputs=True,
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                optimizer = LbfgsOptimizer(name="optimizer")

            self.output_dim = output_dim
            self.optimizer = optimizer

            if network is None:
                network = MLP(
                    input_shape=input_shape,
                    output_dim=output_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                    name="network"
                )

            l_out = network.output_layer

            LayersPowered.__init__(self, [l_out])

            xs_var = network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32, shape=[None, output_dim], name="ys")

            x_mean_var = tf.get_variable(
                name="x_mean",
                shape=(1,) + input_shape,
                initializer=tf.constant_initializer(0., dtype=tf.float32)
            )
            x_std_var = tf.get_variable(
                name="x_std",
                shape=(1,) + input_shape,
                initializer=tf.constant_initializer(1., dtype=tf.float32)
            )

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var

            fit_ys_var = L.get_output(l_out, {network.input_layer: normalized_xs_var})

            loss = - tf.reduce_mean(tf.square(fit_ys_var - ys_var))

            self.f_predict = tensor_utils.compile_function([xs_var], fit_ys_var)

            optimizer_args = dict(
                loss=loss,
                target=self,
                network_outputs=[fit_ys_var],
            )

            optimizer_args["inputs"] = [xs_var, ys_var]

            self.optimizer.update_opt(**optimizer_args)

            self.name = name
            self.l_out = l_out

            self.normalize_inputs = normalize_inputs
            self.x_mean_var = x_mean_var
            self.x_std_var = x_std_var
开发者ID:QuantCollective,项目名称:maml_rl,代码行数:83,代码来源:deterministic_mlp_regressor.py

示例12: __init__

# 需要导入模块: from sandbox.rocky.tf.core.layers_powered import LayersPowered [as 别名]
# 或者: from sandbox.rocky.tf.core.layers_powered.LayersPowered import __init__ [as 别名]
    def __init__(
            self,
            name,
            env_spec,
            hidden_dims=(32,),
            feature_network=None,
            state_include_action=True,
            hidden_nonlinearity=tf.tanh):
        """
        :param env_spec: A spec for the env.
        :param hidden_dims: dimension of hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        with tf.variable_scope(name):
            assert isinstance(env_spec.action_space, Discrete)
            Serializable.quick_init(self, locals())
            super(RecurrentCategoricalPolicy, self).__init__(env_spec)

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim

            l_input = L.InputLayer(
                shape=(None, None, input_dim),
                name="input"
            )

            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name="reshape_feature",
                    op=lambda flat_feature, input: tf.reshape(
                        flat_feature,
                        tf.pack([tf.shape(input)[0], tf.shape(input)[1], feature_dim])
                    ),
                    shape_op=lambda _, input_shape: (input_shape[0], input_shape[1], feature_dim)
                )

            prob_network = DeepGRUNetwork(
                input_shape=(feature_dim,),
                input_layer=l_feature,
                output_dim=env_spec.action_space.n,
                hidden_dims=hidden_dims,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=tf.nn.softmax,
                name="prob_network"
            )

            self.prob_network = prob_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action

            flat_input_var = tf.placeholder(tf.float32, shape=(None, input_dim), name="flat_input")
            if feature_network is None:
                feature_var = flat_input_var
            else:
                feature_var = L.get_output(l_flat_feature, {feature_network.input_layer: flat_input_var})

            # Build the step feedforward function.
            inputs = [flat_input_var] \
                    + [prev_hidden.input_var for prev_hidden
                            in prob_network.step_prev_hidden_layers]
            outputs = [prob_network.step_output_layer] \
                    + prob_network.step_hidden_layers
            outputs = L.get_output(outputs, {prob_network.step_input_layer: feature_var})
            self.f_step_prob = tensor_utils.compile_function(
                    inputs, outputs)

            # Function to fetch hidden init values
            self.f_hid_inits = tensor_utils.compile_function(
                    [], prob_network.hid_inits)

            self.input_dim = input_dim
            self.action_dim = action_dim
            self.hidden_dims = hidden_dims

            self.prev_actions = None
            self.prev_hiddens = None
            self.dist = RecurrentCategorical(env_spec.action_space.n)

            out_layers = [prob_network.output_layer]
            if feature_network is not None:
                out_layers.append(feature_network.output_layer)

            LayersPowered.__init__(self, out_layers)
开发者ID:hans,项目名称:praglang,代码行数:100,代码来源:policies.py


注:本文中的sandbox.rocky.tf.core.layers_powered.LayersPowered.__init__方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。