当前位置: 首页>>代码示例>>Python>>正文


Python SR.symbol方法代码示例

本文整理汇总了Python中sage.symbolic.ring.SR.symbol方法的典型用法代码示例。如果您正苦于以下问题:Python SR.symbol方法的具体用法?Python SR.symbol怎么用?Python SR.symbol使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.symbolic.ring.SR的用法示例。


在下文中一共展示了SR.symbol方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: airy_bi

# 需要导入模块: from sage.symbolic.ring import SR [as 别名]
# 或者: from sage.symbolic.ring.SR import symbol [as 别名]
def airy_bi(alpha, x=None, hold_derivative=True, **kwds):
    r"""
    The Airy Bi function

    The Airy Bi function `\operatorname{Bi}(x)` is (along with
    `\operatorname{Ai}(x)`) one of the two linearly independent standard
    solutions to the Airy differential equation `f''(x) - x f(x) = 0`. It is
    defined by the initial conditions:

    .. MATH::

        \operatorname{Bi}(0)=\frac{1}{3^{1/6} \Gamma\left(\frac{2}{3}\right)},

        \operatorname{Bi}'(0)=\frac{3^{1/6}}{ \Gamma\left(\frac{1}{3}\right)}.

    Another way to define the Airy Bi function is:

    .. MATH::

        \operatorname{Bi}(x)=\frac{1}{\pi}\int_0^\infty
        \left[ \exp\left( xt -\frac{t^3}{3} \right)
        +\sin\left(xt + \frac{1}{3}t^3\right) \right ] dt.

    INPUT:

    - ``alpha`` -- Return the `\alpha`-th order fractional derivative with
      respect to `z`.
      For `\alpha = n = 1,2,3,\ldots` this gives the derivative
      `\operatorname{Bi}^{(n)}(z)`, and for `\alpha = -n = -1,-2,-3,\ldots`
      this gives the `n`-fold iterated integral.

    .. MATH::

        f_0(z) = \operatorname{Bi}(z)

        f_n(z) = \int_0^z f_{n-1}(t) dt

    - ``x`` -- The argument of the function

    - ``hold_derivative`` -- Whether or not to stop from returning higher
      derivatives in terms of `\operatorname{Bi}(x)` and
      `\operatorname{Bi}'(x)`

    .. SEEALSO:: :func:`airy_ai`

    EXAMPLES::

        sage: n, x = var('n x')
        sage: airy_bi(x)
        airy_bi(x)

    It can return derivatives or integrals::

        sage: airy_bi(2, x)
        airy_bi(2, x)
        sage: airy_bi(1, x, hold_derivative=False)
        airy_bi_prime(x)
        sage: airy_bi(2, x, hold_derivative=False)
        x*airy_bi(x)
        sage: airy_bi(-2, x, hold_derivative=False)
        airy_bi(-2, x)
        sage: airy_bi(n, x)
        airy_bi(n, x)

    It can be evaluated symbolically or numerically for real or complex
    values::

        sage: airy_bi(0)
        1/3*3^(5/6)/gamma(2/3)
        sage: airy_bi(0.0)
        0.614926627446001
        sage: airy_bi(I)
        airy_bi(I)
        sage: airy_bi(1.0*I)
        0.648858208330395 + 0.344958634768048*I

    The functions can be evaluated numerically using mpmath,
    which can compute the values to arbitrary precision, and scipy::

        sage: airy_bi(2).n(prec=100)
        3.2980949999782147102806044252
        sage: airy_bi(2).n(algorithm='mpmath', prec=100)
        3.2980949999782147102806044252
        sage: airy_bi(2).n(algorithm='scipy')  # rel tol 1e-10
        3.2980949999782134

    And the derivatives can be evaluated::

        sage: airy_bi(1, 0)
        3^(1/6)/gamma(1/3)
        sage: airy_bi(1, 0.0)
        0.448288357353826

    Plots::

        sage: plot(airy_bi(x), (x, -10, 5)) + plot(airy_bi_prime(x),
        ....:  (x, -10, 5), color='red')
        Graphics object consisting of 2 graphics primitives

    **References**
#.........这里部分代码省略.........
开发者ID:sagemath,项目名称:sage,代码行数:103,代码来源:airy.py


注:本文中的sage.symbolic.ring.SR.symbol方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。