当前位置: 首页>>代码示例>>Python>>正文


Python GinacFunction.__init__方法代码示例

本文整理汇总了Python中sage.symbolic.function.GinacFunction.__init__方法的典型用法代码示例。如果您正苦于以下问题:Python GinacFunction.__init__方法的具体用法?Python GinacFunction.__init__怎么用?Python GinacFunction.__init__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.symbolic.function.GinacFunction的用法示例。


在下文中一共展示了GinacFunction.__init__方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        """
        The arcsine function.

        EXAMPLES::

            sage: arcsin(0.5)
            0.523598775598299
            sage: arcsin(1/2)
            1/6*pi
            sage: arcsin(1 + 1.0*I)
            0.666239432492515 + 1.06127506190504*I

        We can delay evaluation using the ``hold`` parameter::

            sage: arcsin(0,hold=True)
            arcsin(0)

        To then evaluate again, we currently must use Maxima via
        :meth:`sage.symbolic.expression.Expression.simplify`::

            sage: a = arcsin(0,hold=True); a.simplify()
            0

        ``conjugate(arcsin(x))==arcsin(conjugate(x))``, unless on the branch
        cuts which run along the real axis outside the interval [-1, +1].::

            sage: conjugate(arcsin(x))
            conjugate(arcsin(x))
            sage: var('y', domain='positive')
            y
            sage: conjugate(arcsin(y))
            conjugate(arcsin(y))
            sage: conjugate(arcsin(y+I))
            conjugate(arcsin(y + I))
            sage: conjugate(arcsin(1/16))
            arcsin(1/16)
            sage: conjugate(arcsin(2))
            conjugate(arcsin(2))
            sage: conjugate(arcsin(-2))
            -conjugate(arcsin(2))

        TESTS::

            sage: arcsin(x)._sympy_()
            asin(x)
            sage: arcsin(x).operator()
            arcsin
            sage: asin(complex(1,1))
            (0.6662394324925152+1.0612750619050357j)

        Check that :trac:`22823` is fixed::

            sage: bool(asin(SR(2.1)) == NaN)
            True
            sage: asin(SR(2.1)).is_real()
            False
        """
        GinacFunction.__init__(self, 'arcsin', latex_name=r"\arcsin",
                conversions=dict(maxima='asin', sympy='asin', fricas="asin", giac="asin"))
开发者ID:mcognetta,项目名称:sage,代码行数:62,代码来源:trig.py

示例2: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        The hyperbolic sine function.

        EXAMPLES::

            sage: sinh(pi)
            sinh(pi)
            sage: sinh(3.1415)
            11.5476653707437
            sage: float(sinh(pi))
            11.54873935725774...
            sage: RR(sinh(pi))
            11.5487393572577

            sage: latex(sinh(x))
            \sinh\left(x\right)
            sage: sinh(x)._sympy_()
            sinh(x)

        To prevent automatic evaluation, use the ``hold`` parameter::

            sage: sinh(arccosh(x),hold=True)
            sinh(arccosh(x))

        To then evaluate again, use the ``unhold`` method::

            sage: sinh(arccosh(x),hold=True).unhold()
            sqrt(x + 1)*sqrt(x - 1)
        """
        GinacFunction.__init__(self, "sinh", latex_name=r"\sinh")
开发者ID:saraedum,项目名称:sage-renamed,代码行数:33,代码来源:hyperbolic.py

示例3: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        """
        The sine function.

        EXAMPLES::

            sage: sin(0)
            0
            sage: sin(x).subs(x==0)
            0
            sage: sin(2).n(100)
            0.90929742682568169539601986591
            sage: loads(dumps(sin))
            sin

        We can prevent evaluation using the ``hold`` parameter::

            sage: sin(0,hold=True)
            sin(0)

        To then evaluate again, we currently must use Maxima via
        :meth:`sage.symbolic.expression.Expression.simplify`::

            sage: a = sin(0,hold=True); a.simplify()
            0

        TESTS::

            sage: conjugate(sin(x))
            sin(conjugate(x))
        """
        GinacFunction.__init__(self, "sin", latex_name=r"\sin",
                conversions=dict(maxima='sin',mathematica='Sin'))
开发者ID:CETHop,项目名称:sage,代码行数:35,代码来源:trig.py

示例4: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        The Heaviside step function, ``heaviside(x)``.

        INPUT:

        -  ``x`` - a real number or a symbolic expression

        EXAMPLES::

            sage: heaviside(-1)
            0
            sage: heaviside(1)
            1
            sage: heaviside(0)
            heaviside(0)
            sage: heaviside(x)
            heaviside(x)
            sage: latex(heaviside(x))
            H\left(x\right)
            sage: heaviside(x)._sympy_()
            Heaviside(x)
            sage: heaviside(x)._giac_()
            Heaviside(x)
            sage: h(x) = heaviside(x)
            sage: h(pi).numerical_approx()
            1.00000000000000
        """
        GinacFunction.__init__(self, "heaviside", latex_name="H",
                                 conversions=dict(maxima='hstep',
                                                  mathematica='HeavisideTheta',
                                                  sympy='Heaviside',
                                                  giac='Heaviside'))
开发者ID:sagemath,项目名称:sage,代码行数:35,代码来源:generalized.py

示例5: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        The hyperbolic sine function.

        EXAMPLES::

            sage: sinh(pi)
            sinh(pi)
            sage: sinh(3.1415)
            11.5476653707437
            sage: float(sinh(pi))
            11.54873935725774...
            sage: RR(sinh(pi))
            11.5487393572577

            sage: latex(sinh(x))
            \sinh\left(x\right)

        To prevent automatic evaluation, use the ``hold`` parameter::

            sage: sinh(arccosh(x),hold=True)
            sinh(arccosh(x))

        To then evaluate again, we currently must use Maxima via
        :meth:`sage.symbolic.expression.Expression.simplify`::

            sage: sinh(arccosh(x),hold=True).simplify()
            sqrt(x + 1)*sqrt(x - 1)

        """
        GinacFunction.__init__(self, "sinh", latex_name=r"\sinh")
开发者ID:Babyll,项目名称:sage,代码行数:33,代码来源:hyperbolic.py

示例6: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        The absolute value function.

        EXAMPLES::

            sage: var('x y')
            (x, y)
            sage: abs(x)
            abs(x)
            sage: abs(x^2 + y^2)
            abs(x^2 + y^2)
            sage: abs(-2)
            2
            sage: sqrt(x^2)
            sqrt(x^2)
            sage: abs(sqrt(x))
            abs(sqrt(x))
            sage: complex(abs(3*I))
            (3+0j)

            sage: f = sage.functions.other.Function_abs()
            sage: latex(f)
            \mathrm{abs}
            sage: latex(abs(x))
            {\left| x \right|}
        """
        GinacFunction.__init__(self, "abs", latex_name=r"\mathrm{abs}")
开发者ID:ppurka,项目名称:sagelib,代码行数:30,代码来源:other.py

示例7: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        The hyperbolic tangent function.

        EXAMPLES::

            sage: tanh(pi)
            tanh(pi)
            sage: tanh(3.1415)
            0.996271386633702
            sage: float(tanh(pi))
            0.99627207622075
            sage: tan(3.1415/4)
            0.999953674278156
            sage: tanh(pi/4)
            tanh(1/4*pi)
            sage: RR(tanh(1/2))
            0.462117157260010

        ::

            sage: CC(tanh(pi + I*e))
            0.997524731976164 - 0.00279068768100315*I
            sage: ComplexField(100)(tanh(pi + I*e))
            0.99752473197616361034204366446 - 0.0027906876810031453884245163923*I
            sage: CDF(tanh(pi + I*e))  # rel tol 2e-15
            0.9975247319761636 - 0.002790687681003147*I

        To prevent automatic evaluation, use the ``hold`` parameter::

            sage: tanh(arcsinh(x),hold=True)
            tanh(arcsinh(x))

        To then evaluate again, we currently must use Maxima via
        :meth:`sage.symbolic.expression.Expression.simplify`::

            sage: tanh(arcsinh(x),hold=True).simplify()
            x/sqrt(x^2 + 1)

        TESTS::

            sage: latex(tanh(x))
            \tanh\left(x\right)
            sage: tanh(x)._sympy_()
            tanh(x)

        Check that real/imaginary parts are correct (:trac:`20098`)::

            sage: tanh(1+2*I).n()
            1.16673625724092 - 0.243458201185725*I
            sage: tanh(1+2*I).real().n()
            1.16673625724092
            sage: tanh(1+2*I).imag().n()
            -0.243458201185725
            sage: tanh(x).real()
            sinh(2*real_part(x))/(cos(2*imag_part(x)) + cosh(2*real_part(x)))
            sage: tanh(x).imag()
            sin(2*imag_part(x))/(cos(2*imag_part(x)) + cosh(2*real_part(x)))
        """
        GinacFunction.__init__(self, "tanh", latex_name=r"\tanh")
开发者ID:robertwb,项目名称:sage,代码行数:62,代码来源:hyperbolic.py

示例8: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        """
        The arctangent function.

        EXAMPLES::

            sage: arctan(1/2)
            arctan(1/2)
            sage: RDF(arctan(1/2))  # rel tol 1e-15
            0.46364760900080615
            sage: arctan(1 + I)
            arctan(I + 1)
            sage: arctan(1/2).n(100)
            0.46364760900080611621425623146

        We can delay evaluation using the ``hold`` parameter::

            sage: arctan(0,hold=True)
            arctan(0)

        To then evaluate again, we currently must use Maxima via
        :meth:`sage.symbolic.expression.Expression.simplify`::

            sage: a = arctan(0,hold=True); a.simplify()
            0

        ``conjugate(arctan(x))==arctan(conjugate(x))``, unless on the branch
        cuts which run along the imaginary axis outside the interval [-I, +I].::

            sage: conjugate(arctan(x))
            conjugate(arctan(x))
            sage: var('y', domain='positive')
            y
            sage: conjugate(arctan(y))
            arctan(y)
            sage: conjugate(arctan(y+I))
            conjugate(arctan(y + I))
            sage: conjugate(arctan(1/16))
            arctan(1/16)
            sage: conjugate(arctan(-2*I))
            conjugate(arctan(-2*I))
            sage: conjugate(arctan(2*I))
            conjugate(arctan(2*I))
            sage: conjugate(arctan(I/2))
            arctan(-1/2*I)

        TESTS::

            sage: arctan(x).operator()
            arctan

        Check that :trac:`19918` is fixed::

            sage: arctan(-x).subs(x=oo)
            -1/2*pi
            sage: arctan(-x).subs(x=-oo)
            1/2*pi
        """
        GinacFunction.__init__(self, "arctan", latex_name=r'\arctan',
                conversions=dict(maxima='atan', sympy='atan'))
开发者ID:anuragwaliya,项目名称:sage,代码行数:62,代码来源:trig.py

示例9: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        Derivatives of the Riemann zeta function.

        EXAMPLES::

            sage: zetaderiv(1, x)
            zetaderiv(1, x)
            sage: zetaderiv(1, x).diff(x)
            zetaderiv(2, x)
            sage: var('n')
            n
            sage: zetaderiv(n,x)
            zetaderiv(n, x)
            sage: zetaderiv(1, 4).n()
            -0.0689112658961254
            sage: import mpmath; mpmath.diff(lambda x: mpmath.zeta(x), 4)
            mpf('-0.068911265896125382')

        TESTS::

            sage: latex(zetaderiv(2,x))
            \zeta^\prime\left(2, x\right)
            sage: a = loads(dumps(zetaderiv(2,x)))
            sage: a.operator() == zetaderiv
            True
        """
        GinacFunction.__init__(self, "zetaderiv", nargs=2)
开发者ID:rwst,项目名称:sage,代码行数:30,代码来源:transcendental.py

示例10: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        The cotangent function.

        EXAMPLES::

            sage: cot(pi/4)
            1
            sage: RR(cot(pi/4))
            1.00000000000000
            sage: cot(1/2)
            cot(1/2)
            sage: cot(0.5)
            1.83048772171245

            sage: latex(cot(x))
            \cot\left(x\right)

        We can prevent evaluation using the ``hold`` parameter::

            sage: cot(pi/4,hold=True)
            cot(1/4*pi)

        To then evaluate again, we currently must use Maxima via
        :meth:`sage.symbolic.expression.Expression.simplify`::

            sage: a = cot(pi/4,hold=True); a.simplify()
            1

        EXAMPLES::

            sage: cot(pi/4)
            1
            sage: cot(x).subs(x==pi/4)
            1
            sage: cot(pi/7)
            cot(1/7*pi)
            sage: cot(x)
            cot(x)

            sage: n(cot(pi/4),100)
            1.0000000000000000000000000000
            sage: float(cot(1))
            0.64209261593433...
            sage: bool(diff(cot(x), x) == diff(1/tan(x), x))
            True
            sage: diff(cot(x), x)
            -cot(x)^2 - 1

        TESTS:

        Test complex input::

            sage: cot(complex(1,1))     # rel tol 1e-15
            (0.21762156185440273-0.8680141428959249j)
            sage: cot(1.+I)
            0.217621561854403 - 0.868014142895925*I
        """
        GinacFunction.__init__(self, "cot", latex_name=r"\cot")
开发者ID:Babyll,项目名称:sage,代码行数:61,代码来源:trig.py

示例11: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        r"""
        The polylog function
        `\text{Li}_n(z) = \sum_{k=1}^{\infty} z^k / k^n`.

        INPUT:

        -  ``n`` - object
        -  ``z`` - object

        EXAMPLES::

            sage: polylog(1, x)
            -log(-x + 1)
            sage: polylog(2,1)
            1/6*pi^2
            sage: polylog(2,x^2+1)
            polylog(2, x^2 + 1)
            sage: polylog(4,0.5)
            polylog(4, 0.500000000000000)

            sage: f = polylog(4, 1); f
            1/90*pi^4
            sage: f.n()
            1.08232323371114

            sage: polylog(4, 2).n()
            2.42786280675470 - 0.174371300025453*I
            sage: complex(polylog(4,2))
            (2.4278628067547032-0.17437130002545306j)
            sage: float(polylog(4,0.5))
            0.5174790616738993

            sage: z = var('z')
            sage: polylog(2,z).series(z==0, 5)
            1*z + 1/4*z^2 + 1/9*z^3 + 1/16*z^4 + Order(z^5)

            sage: loads(dumps(polylog))
            polylog

            sage: latex(polylog(5, x))
            {\rm Li}_{5}(x)

        TESTS:

        Check if #8459 is fixed::

            sage: t = maxima(polylog(5,x)).sage(); t
            polylog(5, x)
            sage: t.operator() == polylog
            True
            sage: t.subs(x=.5).n()
            0.508400579242269
        """
        GinacFunction.__init__(self, "polylog", nargs=2)
开发者ID:BlairArchibald,项目名称:sage,代码行数:57,代码来源:log.py

示例12: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        """
        The arccosine function.

        EXAMPLES::

            sage: arccos(0.5)
            1.04719755119660
            sage: arccos(1/2)
            1/3*pi
            sage: arccos(1 + 1.0*I)
            0.904556894302381 - 1.06127506190504*I
            sage: arccos(3/4).n(100)
            0.72273424781341561117837735264

        We can delay evaluation using the ``hold`` parameter::

            sage: arccos(0,hold=True)
            arccos(0)

        To then evaluate again, we currently must use Maxima via
        :meth:`sage.symbolic.expression.Expression.simplify`::

            sage: a = arccos(0,hold=True); a.simplify()
            1/2*pi

        ``conjugate(arccos(x))==arccos(conjugate(x))``, unless on the branch
        cuts, which run along the real axis outside the interval [-1, +1].::

            sage: conjugate(arccos(x))
            conjugate(arccos(x))
            sage: var('y', domain='positive')
            y
            sage: conjugate(arccos(y))
            conjugate(arccos(y))
            sage: conjugate(arccos(y+I))
            conjugate(arccos(y + I))
            sage: conjugate(arccos(1/16))
            arccos(1/16)
            sage: conjugate(arccos(2))
            conjugate(arccos(2))
            sage: conjugate(arccos(-2))
            pi - conjugate(arccos(2))

        TESTS::

            sage: arccos(x)._sympy_()
            acos(x)
            sage: arccos(x).operator()
            arccos
            sage: acos(complex(1,1))
            (0.9045568943023814-1.0612750619050357j)
        """
        GinacFunction.__init__(self, 'arccos', latex_name=r"\arccos",
                conversions=dict(maxima='acos', sympy='acos'))
开发者ID:robertwb,项目名称:sage,代码行数:57,代码来源:trig.py

示例13: __init__

# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
    def __init__(self):
        """
        TESTS::

            sage: loads(dumps(exp))
            exp
            sage: maxima(exp(x))._sage_()
            e^x
        """
        GinacFunction.__init__(self, "exp", latex_name=r"\exp",
                                   conversions=dict(maxima='exp', fricas='exp'))
开发者ID:sagemath,项目名称:sage,代码行数:13,代码来源:log.py


注:本文中的sage.symbolic.function.GinacFunction.__init__方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。