本文整理汇总了Python中sage.symbolic.function.GinacFunction.__init__方法的典型用法代码示例。如果您正苦于以下问题:Python GinacFunction.__init__方法的具体用法?Python GinacFunction.__init__怎么用?Python GinacFunction.__init__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.symbolic.function.GinacFunction
的用法示例。
在下文中一共展示了GinacFunction.__init__方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
"""
The arcsine function.
EXAMPLES::
sage: arcsin(0.5)
0.523598775598299
sage: arcsin(1/2)
1/6*pi
sage: arcsin(1 + 1.0*I)
0.666239432492515 + 1.06127506190504*I
We can delay evaluation using the ``hold`` parameter::
sage: arcsin(0,hold=True)
arcsin(0)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: a = arcsin(0,hold=True); a.simplify()
0
``conjugate(arcsin(x))==arcsin(conjugate(x))``, unless on the branch
cuts which run along the real axis outside the interval [-1, +1].::
sage: conjugate(arcsin(x))
conjugate(arcsin(x))
sage: var('y', domain='positive')
y
sage: conjugate(arcsin(y))
conjugate(arcsin(y))
sage: conjugate(arcsin(y+I))
conjugate(arcsin(y + I))
sage: conjugate(arcsin(1/16))
arcsin(1/16)
sage: conjugate(arcsin(2))
conjugate(arcsin(2))
sage: conjugate(arcsin(-2))
-conjugate(arcsin(2))
TESTS::
sage: arcsin(x)._sympy_()
asin(x)
sage: arcsin(x).operator()
arcsin
sage: asin(complex(1,1))
(0.6662394324925152+1.0612750619050357j)
Check that :trac:`22823` is fixed::
sage: bool(asin(SR(2.1)) == NaN)
True
sage: asin(SR(2.1)).is_real()
False
"""
GinacFunction.__init__(self, 'arcsin', latex_name=r"\arcsin",
conversions=dict(maxima='asin', sympy='asin', fricas="asin", giac="asin"))
示例2: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
The hyperbolic sine function.
EXAMPLES::
sage: sinh(pi)
sinh(pi)
sage: sinh(3.1415)
11.5476653707437
sage: float(sinh(pi))
11.54873935725774...
sage: RR(sinh(pi))
11.5487393572577
sage: latex(sinh(x))
\sinh\left(x\right)
sage: sinh(x)._sympy_()
sinh(x)
To prevent automatic evaluation, use the ``hold`` parameter::
sage: sinh(arccosh(x),hold=True)
sinh(arccosh(x))
To then evaluate again, use the ``unhold`` method::
sage: sinh(arccosh(x),hold=True).unhold()
sqrt(x + 1)*sqrt(x - 1)
"""
GinacFunction.__init__(self, "sinh", latex_name=r"\sinh")
示例3: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
"""
The sine function.
EXAMPLES::
sage: sin(0)
0
sage: sin(x).subs(x==0)
0
sage: sin(2).n(100)
0.90929742682568169539601986591
sage: loads(dumps(sin))
sin
We can prevent evaluation using the ``hold`` parameter::
sage: sin(0,hold=True)
sin(0)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: a = sin(0,hold=True); a.simplify()
0
TESTS::
sage: conjugate(sin(x))
sin(conjugate(x))
"""
GinacFunction.__init__(self, "sin", latex_name=r"\sin",
conversions=dict(maxima='sin',mathematica='Sin'))
示例4: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
The Heaviside step function, ``heaviside(x)``.
INPUT:
- ``x`` - a real number or a symbolic expression
EXAMPLES::
sage: heaviside(-1)
0
sage: heaviside(1)
1
sage: heaviside(0)
heaviside(0)
sage: heaviside(x)
heaviside(x)
sage: latex(heaviside(x))
H\left(x\right)
sage: heaviside(x)._sympy_()
Heaviside(x)
sage: heaviside(x)._giac_()
Heaviside(x)
sage: h(x) = heaviside(x)
sage: h(pi).numerical_approx()
1.00000000000000
"""
GinacFunction.__init__(self, "heaviside", latex_name="H",
conversions=dict(maxima='hstep',
mathematica='HeavisideTheta',
sympy='Heaviside',
giac='Heaviside'))
示例5: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
The hyperbolic sine function.
EXAMPLES::
sage: sinh(pi)
sinh(pi)
sage: sinh(3.1415)
11.5476653707437
sage: float(sinh(pi))
11.54873935725774...
sage: RR(sinh(pi))
11.5487393572577
sage: latex(sinh(x))
\sinh\left(x\right)
To prevent automatic evaluation, use the ``hold`` parameter::
sage: sinh(arccosh(x),hold=True)
sinh(arccosh(x))
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: sinh(arccosh(x),hold=True).simplify()
sqrt(x + 1)*sqrt(x - 1)
"""
GinacFunction.__init__(self, "sinh", latex_name=r"\sinh")
示例6: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
The absolute value function.
EXAMPLES::
sage: var('x y')
(x, y)
sage: abs(x)
abs(x)
sage: abs(x^2 + y^2)
abs(x^2 + y^2)
sage: abs(-2)
2
sage: sqrt(x^2)
sqrt(x^2)
sage: abs(sqrt(x))
abs(sqrt(x))
sage: complex(abs(3*I))
(3+0j)
sage: f = sage.functions.other.Function_abs()
sage: latex(f)
\mathrm{abs}
sage: latex(abs(x))
{\left| x \right|}
"""
GinacFunction.__init__(self, "abs", latex_name=r"\mathrm{abs}")
示例7: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
The hyperbolic tangent function.
EXAMPLES::
sage: tanh(pi)
tanh(pi)
sage: tanh(3.1415)
0.996271386633702
sage: float(tanh(pi))
0.99627207622075
sage: tan(3.1415/4)
0.999953674278156
sage: tanh(pi/4)
tanh(1/4*pi)
sage: RR(tanh(1/2))
0.462117157260010
::
sage: CC(tanh(pi + I*e))
0.997524731976164 - 0.00279068768100315*I
sage: ComplexField(100)(tanh(pi + I*e))
0.99752473197616361034204366446 - 0.0027906876810031453884245163923*I
sage: CDF(tanh(pi + I*e)) # rel tol 2e-15
0.9975247319761636 - 0.002790687681003147*I
To prevent automatic evaluation, use the ``hold`` parameter::
sage: tanh(arcsinh(x),hold=True)
tanh(arcsinh(x))
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: tanh(arcsinh(x),hold=True).simplify()
x/sqrt(x^2 + 1)
TESTS::
sage: latex(tanh(x))
\tanh\left(x\right)
sage: tanh(x)._sympy_()
tanh(x)
Check that real/imaginary parts are correct (:trac:`20098`)::
sage: tanh(1+2*I).n()
1.16673625724092 - 0.243458201185725*I
sage: tanh(1+2*I).real().n()
1.16673625724092
sage: tanh(1+2*I).imag().n()
-0.243458201185725
sage: tanh(x).real()
sinh(2*real_part(x))/(cos(2*imag_part(x)) + cosh(2*real_part(x)))
sage: tanh(x).imag()
sin(2*imag_part(x))/(cos(2*imag_part(x)) + cosh(2*real_part(x)))
"""
GinacFunction.__init__(self, "tanh", latex_name=r"\tanh")
示例8: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
"""
The arctangent function.
EXAMPLES::
sage: arctan(1/2)
arctan(1/2)
sage: RDF(arctan(1/2)) # rel tol 1e-15
0.46364760900080615
sage: arctan(1 + I)
arctan(I + 1)
sage: arctan(1/2).n(100)
0.46364760900080611621425623146
We can delay evaluation using the ``hold`` parameter::
sage: arctan(0,hold=True)
arctan(0)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: a = arctan(0,hold=True); a.simplify()
0
``conjugate(arctan(x))==arctan(conjugate(x))``, unless on the branch
cuts which run along the imaginary axis outside the interval [-I, +I].::
sage: conjugate(arctan(x))
conjugate(arctan(x))
sage: var('y', domain='positive')
y
sage: conjugate(arctan(y))
arctan(y)
sage: conjugate(arctan(y+I))
conjugate(arctan(y + I))
sage: conjugate(arctan(1/16))
arctan(1/16)
sage: conjugate(arctan(-2*I))
conjugate(arctan(-2*I))
sage: conjugate(arctan(2*I))
conjugate(arctan(2*I))
sage: conjugate(arctan(I/2))
arctan(-1/2*I)
TESTS::
sage: arctan(x).operator()
arctan
Check that :trac:`19918` is fixed::
sage: arctan(-x).subs(x=oo)
-1/2*pi
sage: arctan(-x).subs(x=-oo)
1/2*pi
"""
GinacFunction.__init__(self, "arctan", latex_name=r'\arctan',
conversions=dict(maxima='atan', sympy='atan'))
示例9: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
Derivatives of the Riemann zeta function.
EXAMPLES::
sage: zetaderiv(1, x)
zetaderiv(1, x)
sage: zetaderiv(1, x).diff(x)
zetaderiv(2, x)
sage: var('n')
n
sage: zetaderiv(n,x)
zetaderiv(n, x)
sage: zetaderiv(1, 4).n()
-0.0689112658961254
sage: import mpmath; mpmath.diff(lambda x: mpmath.zeta(x), 4)
mpf('-0.068911265896125382')
TESTS::
sage: latex(zetaderiv(2,x))
\zeta^\prime\left(2, x\right)
sage: a = loads(dumps(zetaderiv(2,x)))
sage: a.operator() == zetaderiv
True
"""
GinacFunction.__init__(self, "zetaderiv", nargs=2)
示例10: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
The cotangent function.
EXAMPLES::
sage: cot(pi/4)
1
sage: RR(cot(pi/4))
1.00000000000000
sage: cot(1/2)
cot(1/2)
sage: cot(0.5)
1.83048772171245
sage: latex(cot(x))
\cot\left(x\right)
We can prevent evaluation using the ``hold`` parameter::
sage: cot(pi/4,hold=True)
cot(1/4*pi)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: a = cot(pi/4,hold=True); a.simplify()
1
EXAMPLES::
sage: cot(pi/4)
1
sage: cot(x).subs(x==pi/4)
1
sage: cot(pi/7)
cot(1/7*pi)
sage: cot(x)
cot(x)
sage: n(cot(pi/4),100)
1.0000000000000000000000000000
sage: float(cot(1))
0.64209261593433...
sage: bool(diff(cot(x), x) == diff(1/tan(x), x))
True
sage: diff(cot(x), x)
-cot(x)^2 - 1
TESTS:
Test complex input::
sage: cot(complex(1,1)) # rel tol 1e-15
(0.21762156185440273-0.8680141428959249j)
sage: cot(1.+I)
0.217621561854403 - 0.868014142895925*I
"""
GinacFunction.__init__(self, "cot", latex_name=r"\cot")
示例11: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
r"""
The polylog function
`\text{Li}_n(z) = \sum_{k=1}^{\infty} z^k / k^n`.
INPUT:
- ``n`` - object
- ``z`` - object
EXAMPLES::
sage: polylog(1, x)
-log(-x + 1)
sage: polylog(2,1)
1/6*pi^2
sage: polylog(2,x^2+1)
polylog(2, x^2 + 1)
sage: polylog(4,0.5)
polylog(4, 0.500000000000000)
sage: f = polylog(4, 1); f
1/90*pi^4
sage: f.n()
1.08232323371114
sage: polylog(4, 2).n()
2.42786280675470 - 0.174371300025453*I
sage: complex(polylog(4,2))
(2.4278628067547032-0.17437130002545306j)
sage: float(polylog(4,0.5))
0.5174790616738993
sage: z = var('z')
sage: polylog(2,z).series(z==0, 5)
1*z + 1/4*z^2 + 1/9*z^3 + 1/16*z^4 + Order(z^5)
sage: loads(dumps(polylog))
polylog
sage: latex(polylog(5, x))
{\rm Li}_{5}(x)
TESTS:
Check if #8459 is fixed::
sage: t = maxima(polylog(5,x)).sage(); t
polylog(5, x)
sage: t.operator() == polylog
True
sage: t.subs(x=.5).n()
0.508400579242269
"""
GinacFunction.__init__(self, "polylog", nargs=2)
示例12: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
"""
The arccosine function.
EXAMPLES::
sage: arccos(0.5)
1.04719755119660
sage: arccos(1/2)
1/3*pi
sage: arccos(1 + 1.0*I)
0.904556894302381 - 1.06127506190504*I
sage: arccos(3/4).n(100)
0.72273424781341561117837735264
We can delay evaluation using the ``hold`` parameter::
sage: arccos(0,hold=True)
arccos(0)
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: a = arccos(0,hold=True); a.simplify()
1/2*pi
``conjugate(arccos(x))==arccos(conjugate(x))``, unless on the branch
cuts, which run along the real axis outside the interval [-1, +1].::
sage: conjugate(arccos(x))
conjugate(arccos(x))
sage: var('y', domain='positive')
y
sage: conjugate(arccos(y))
conjugate(arccos(y))
sage: conjugate(arccos(y+I))
conjugate(arccos(y + I))
sage: conjugate(arccos(1/16))
arccos(1/16)
sage: conjugate(arccos(2))
conjugate(arccos(2))
sage: conjugate(arccos(-2))
pi - conjugate(arccos(2))
TESTS::
sage: arccos(x)._sympy_()
acos(x)
sage: arccos(x).operator()
arccos
sage: acos(complex(1,1))
(0.9045568943023814-1.0612750619050357j)
"""
GinacFunction.__init__(self, 'arccos', latex_name=r"\arccos",
conversions=dict(maxima='acos', sympy='acos'))
示例13: __init__
# 需要导入模块: from sage.symbolic.function import GinacFunction [as 别名]
# 或者: from sage.symbolic.function.GinacFunction import __init__ [as 别名]
def __init__(self):
"""
TESTS::
sage: loads(dumps(exp))
exp
sage: maxima(exp(x))._sage_()
e^x
"""
GinacFunction.__init__(self, "exp", latex_name=r"\exp",
conversions=dict(maxima='exp', fricas='exp'))