当前位置: 首页>>代码示例>>Python>>正文


Python element.parent函数代码示例

本文整理汇总了Python中sage.structure.element.parent函数的典型用法代码示例。如果您正苦于以下问题:Python parent函数的具体用法?Python parent怎么用?Python parent使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了parent函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _element_constructor_

    def _element_constructor_(self, vectors):
        """
        Construct an element of ``self`` from ``vectors``.

        TESTS::

            sage: E.<x,y> = ExteriorAlgebra(QQ)
            sage: H = E.hochschild_complex(E)
            sage: H(0)
            Trivial chain
            sage: H(2)
            Chain(0: 2)
            sage: H(x+2*y)
            Chain(0: x + 2*y)
            sage: H({0: H.module(0).an_element()})
            Chain(0: 2 + 2*x + 3*y)
            sage: H({2: H.module(2).an_element()})
            Chain(2: 2*1 # 1 # 1 + 2*1 # 1 # x + 3*1 # 1 # y)
            sage: H({0:x-y, 2: H.module(2).an_element()})
            Chain with 2 nonzero terms over Rational Field
            sage: H([2])
            Traceback (most recent call last):
            ...
            ValueError: cannot construct an element from [2]
        """
        if not vectors:  # special case: the zero chain
            return self.element_class(self, {})
        # special case: an element of the defining module
        if self._M.has_coerce_map_from(parent(vectors)):
            vectors = self._M(vectors)
        if parent(vectors) is self._M:
            mc = vectors.monomial_coefficients(copy=False)
            vec = self.module(0)._from_dict({(k,): mc[k] for k in mc})
            return self.element_class(self, {0: vec})
        if isinstance(vectors, (Chain_class, self.element_class)):
            vectors = vectors._vec
        data = dict()
        if not isinstance(vectors, dict):
            raise ValueError("cannot construct an element from {}".format(vectors))
        # Special handling for the 0 free module
        # FIXME: Allow coercions between the 0 free module and the defining module
        if 0 in vectors:
            vec = vectors.pop(0)
            if parent(vec) is self._M:
                mc = vec.monomial_coefficients(copy=False)
                data[0] = self.module(0)._from_dict({(k,): mc[k] for k in mc})
            else:
                data[0] = self.module(0)(vec)
        for degree in vectors:
            vec = self.module(degree)(vectors[degree])
            if not vec:
                continue
            data[degree] = vec
        return self.element_class(self, data)
开发者ID:mcognetta,项目名称:sage,代码行数:54,代码来源:hochschild_complex.py

示例2: __ge__

        def __ge__(self, other):
            """
            TESTS::

                sage: A = crystals.KirillovReshetikhin(['C',2,1], 1,2).affinization()
                sage: S = A.subcrystal(max_depth=2)
                sage: ([(i,j) for i in range(len(S)) for j in range(len(S)) if S[i]>=S[j]]
                ....: == [(i,j) for i in range(len(S)) for j in range(len(S)) if 
                ....: S[i].value>=S[j].value])
                True
            """
            return parent(self) is parent(other) and self.value >= other.value
开发者ID:Babyll,项目名称:sage,代码行数:12,代码来源:subcrystal.py

示例3: __cmp__

        def __cmp__(self, other):
            """
            TESTS::

                sage: A = crystals.KirillovReshetikhin(['C',2,1], 1,2).affinization()
                sage: S = A.subcrystal(max_depth=2)
                sage: ([(i,j,cmp(S[i],S[j])) for i in range(len(S)) for j in range(len(S))]
                ....: == [(i,j,cmp(S[i].value,S[j].value)) for i in range(len(S)) for j in range(len(S))])
                True
            """
            if parent(self) is parent(other):
                return cmp(self.value, other.value)
            else:
                return cmp(parent(self), parent(other))
开发者ID:Babyll,项目名称:sage,代码行数:14,代码来源:subcrystal.py

示例4: __lt__

    def __lt__(self, other):
        """"
        EXAMPLES::

            sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
            sage: b = K(rows=[[1]])
            sage: c = K(rows=[[2]])
            sage: c<b
            False
            sage: b<b
            False
            sage: b<c
            True
        """
        return parent(self) is parent(other) and self.value < other.value
开发者ID:Babyll,项目名称:sage,代码行数:15,代码来源:affine.py

示例5: __ge__

    def __ge__(self, other):
        """"
        EXAMPLES::

            sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
            sage: b = K(rows=[[1]])
            sage: c = K(rows=[[2]])
            sage: c>=b
            True
            sage: b>=b
            True
            sage: b>=c
            False
        """
        return parent(self) is parent(other) and self.value >= other.value
开发者ID:Babyll,项目名称:sage,代码行数:15,代码来源:affine.py

示例6: is_parent_of

        def is_parent_of(self, element):
            """
            Returns whether ``self`` is the parent of ``element``

            INPUT:
             - ``element`` -- any object

            EXAMPLES::

                sage: S = ZZ
                sage: S.is_parent_of(1)
                True
                sage: S.is_parent_of(2/1)
                False

            This method differs from :meth:`__contains__` because it
            does not attempt any coercion::

                sage: 2/1 in S, S.is_parent_of(2/1)
                (True, False)
                sage: int(1) in S, S.is_parent_of(int(1))
                (True, False)
            """
            from sage.structure.element import parent
            return parent(element) == self
开发者ID:jwbober,项目名称:sagelib,代码行数:25,代码来源:sets_cat.py

示例7: index_of_object

    def index_of_object(self, i):
        """
        Try to return the node of the Dynkin diagram indexing the object `i`.

        OUTPUT: a node of the Dynkin diagram or ``None``

        EXAMPLES::

            sage: L = RootSystem(["A",3]).root_lattice()
            sage: alpha = L.simple_roots()
            sage: omega = RootSystem(["A",3]).weight_lattice().fundamental_weights()
            sage: options = L.plot_parse_options(labels=False)
            sage: options.index_of_object(3)
            3
            sage: options.index_of_object(alpha[1])
            1
            sage: options.index_of_object(omega[2])
            2
            sage: options.index_of_object(omega[2]+omega[3])
            sage: options.index_of_object(30)
            sage: options.index_of_object("bla")
        """
        if parent(i) in RootLatticeRealizations and len(i) == 1 and i.leading_coefficient().is_one():
            i = i.leading_support()
        if i in self.space.cartan_type().index_set():
            return i
        return None
开发者ID:pombredanne,项目名称:sage,代码行数:27,代码来源:plot.py

示例8: _evalf_

    def _evalf_(self, n, x, parent=None, algorithm=None):
        """
        EXAMPLES::

            sage: bessel_J(0.0, 1.0)
            0.765197686557967
            sage: bessel_J(0, 1).n(digits=20)
            0.76519768655796655145
            sage: bessel_J(0.5, 1.5)
            0.649838074753747

        Check for correct rounding (:trac:`17122`)::

            sage: R = RealField(113)
            sage: a = R("8.935761195587725798762818805462843676e-01")
            sage: aa = RealField(200)(a)
            sage: for n in [-10..10]:
            ....:     b = bessel_J(R(n), a)
            ....:     bb = R(bessel_J(n, aa))
            ....:     if b != bb:
            ....:         print n, b-bb
        """
        if parent is not None:
            x = parent(x)

        try:
            return x.jn(Integer(n))
        except Exception:
            pass

        n, x = get_coercion_model().canonical_coercion(n, x)
        import mpmath
        return mpmath_utils.call(mpmath.besselj, n, x, parent=parent)
开发者ID:Findstat,项目名称:sage,代码行数:33,代码来源:bessel.py

示例9: _cmp_

    def _cmp_(self, other):
        """
        EXAMPLES::

            sage: one = lisp(1); two = lisp(2)
            sage: one == one
            True
            sage: one != two
            True
            sage: one < two
            True
            sage: two > one
            True
            sage: one < 1
            False
            sage: two == 2
            True

        """
        P = self._check_valid()
        if parent(other) is not P:
            other = P(other)

        if P.eval('(= %s %s)'%(self.name(), other.name())) == P._true_symbol():
            return 0
        elif P.eval('(< %s %s)'%(self.name(), other.name())) == P._true_symbol():
            return -1
        else:
            return 1
开发者ID:saraedum,项目名称:sage-renamed,代码行数:29,代码来源:lisp.py

示例10: __pow__

    def __pow__(self, n):
        """
        EXAMPLES::

            sage: a = maxima('2')
            sage: a^(3/4)
            2^(3/4)

        ::

            sage: f = maxima.function('x','sin(x)')
            sage: g = maxima('-cos(x)')
            sage: f^g
            1/sin(x)^cos(x)

        ::

            sage: f = maxima.function('x','sin(x)')
            sage: g = maxima('-cos(x)') # not a function
            sage: g^f
            (-cos(x))^sin(x)
        """
        P = self._check_valid()
        if parent(n) is not P:
            n = P(n)
        return self._operation("^", n)
开发者ID:robertwb,项目名称:sage,代码行数:26,代码来源:interface.py

示例11: __contains__

    def __contains__(self, x):
        r"""
        Test if x is an element of this group. This checks that x defines (is?) a 2x2 integer matrix of determinant 1, and
        then hands over to the routine _contains_sl2, which derived classes should implement.

        EXAMPLES::

            sage: [1,2] in SL2Z # indirect doctest
            False
            sage: [1,2,0,1] in SL2Z # indirect doctest
            True
            sage: SL2Z([1,2,0,1]) in Gamma(3) # indirect doctest
            False
            sage: -1 in SL2Z
            True
            sage: 2 in SL2Z
            False
        """
        # Do not override this function! Derived classes should override
        # _contains_sl2.
        if isinstance(x, list) and len(x) == 4:
            if not (x[0] in ZZ and x[1] in ZZ and x[2] in ZZ and x[3] in ZZ):
                return False
            a,b,c,d = map(ZZ, x)
            if a*d - b*c != 1: return False
            return self._contains_sl2(a,b,c,d)
        else:
            if parent(x) is not SL2Z:
                try:
                    y = SL2Z(x)
                except TypeError:
                    return False
                x = y
            return self._contains_sl2(x.a(),x.b(),x.c(),x.d())
开发者ID:Babyll,项目名称:sage,代码行数:34,代码来源:arithgroup_generic.py

示例12: strongly_finer

    def strongly_finer(self):
        """
        Return the set of ordered set partitions which are strongly
        finer than ``self``.

        See :meth:`is_strongly_finer` for the definition of "strongly
        finer".

        EXAMPLES::

            sage: C = OrderedSetPartition([[1, 3], [2]]).strongly_finer()
            sage: C.cardinality()
            2
            sage: C.list()
            [[{1}, {3}, {2}], [{1, 3}, {2}]]

            sage: OrderedSetPartition([]).strongly_finer()
            {[]}

            sage: W = OrderedSetPartition([[4, 9], [-1, 2]])
            sage: W.strongly_finer().list()
            [[{4}, {9}, {-1}, {2}],
             [{4}, {9}, {-1, 2}],
             [{4, 9}, {-1}, {2}],
             [{4, 9}, {-1, 2}]]
        """
        par = parent(self)
        if not self:
            return FiniteEnumeratedSet([self])
        else:
            buo = OrderedSetPartition.bottom_up_osp
            return FiniteEnumeratedSet([par(sum((list(P) for P in C), []))
                    for C in cartesian_product([[buo(X, comp) for comp in Compositions(len(X))] for X in self])])
开发者ID:saraedum,项目名称:sage-renamed,代码行数:33,代码来源:set_partition_ordered.py

示例13: _element_constructor_

        def _element_constructor_(self, element):
            """
            Coerce ``element`` into ``self``

            INPUT:

            - ``element`` -- any object

            This default implementation returns ``element`` if
            ``self`` is a facade for ``parent(element)`. Otherwise it
            attempts in turn to coerce ``element`` into each parent
            ``self`` is a facade for.

            This implementation is only valid for a facade parent
            which models the full union of the parents it is a facade
            for. Other facade parents should redefine
            :meth:`element_constructor` appropriately.

            EXAMPLES::

                sage: S = Sets().Facades().example("union"); S
                An example of a facade set: the integers completed by +-infinity
                sage: S(1)
                1
                sage: S(1/2)
                Traceback (most recent call last):
                ...
                ValueError: Can't coerce `1/2` in any parent `An example of a facade set: the integers completed by +-infinity` is a facade for
                sage: S(2/1)
                2
                sage: S(2/1).parent()
                Integer Ring
                sage: S(int(1))
                1
                sage: S(int(1)).parent()
                Integer Ring

            Facade parents that model strict subsets should redefine
            :meth:`element_constructor`::

                sage: S = Sets().Facades().example(); S
                An example of facade set: the monoid of positive integers
                sage: S(-1)
                Traceback (most recent call last):
                ...
                ValueError: %s should be positive
            """
            if self.is_parent_of(element):
                return element
            else:
                parents = self.facade_for()
                if parents is True:
                    return NotImplementedError
                for parent in self.facade_for():
                    try:
                        return parent(element)
                    except Exception:
                        pass
            raise ValueError, "Can't coerce `%s` in any parent `%s` is a facade for"%(element, self)
开发者ID:jeromeca,项目名称:sagesmc,代码行数:59,代码来源:facade_sets.py

示例14: __cmp__

    def __cmp__(self, other):
        """"
        EXAMPLES::

            sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
            sage: b = K(rows=[[1]])
            sage: c = K(rows=[[2]])
            sage: cmp(b,c)
            -1
            sage: cmp(b,b)
            0

        If the parent are different, it uses comparison of the parents::

            sage: cmp(b,1) == cmp(b.parent(), ZZ)
            True
        """
        return cmp(parent(self), parent(other)) or cmp(self.value, other.value)
开发者ID:Babyll,项目名称:sage,代码行数:18,代码来源:affine.py

示例15: __ne__

    def __ne__(self, other):
        r"""
        TESTS::

            sage: from flatsurf import *
            sage: t = translation_surfaces.square_torus()
            sage: F = t.fundamental_group()
            sage: a,b = F.gens()
            sage: a != b
            True
            sage: a*b != b*a
            True
            sage: a*b != a*b
            False
        """
        return parent(self) is not parent(other) or \
               self._polys != other._polys or \
               self._edges != other._edges
开发者ID:videlec,项目名称:sage-flatsurf,代码行数:18,代码来源:fundamental_group.py


注:本文中的sage.structure.element.parent函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。