当前位置: 首页>>代码示例>>Python>>正文


Python commutative_ring.is_CommutativeRing函数代码示例

本文整理汇总了Python中sage.rings.commutative_ring.is_CommutativeRing函数的典型用法代码示例。如果您正苦于以下问题:Python is_CommutativeRing函数的具体用法?Python is_CommutativeRing怎么用?Python is_CommutativeRing使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了is_CommutativeRing函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_key_and_extra_args

    def create_key_and_extra_args(self, X, Y, category=None, base=ZZ,
                                  check=True):
        """
        Create a key that uniquely determines the Hom-set.

        INPUT:

        - ``X`` -- a scheme. The domain of the morphisms.

        - ``Y`` -- a scheme. The codomain of the morphisms.

        - ``category`` -- a category for the Hom-sets (default: schemes over
          given base).

        - ``base`` -- a scheme or a ring. The base scheme of domain
          and codomain schemes. If a ring is specified, the spectrum
          of that ring will be used as base scheme.

        - ``check`` -- boolean (default: ``True``).

        EXAMPLES::

            sage: A2 = AffineSpace(QQ,2)
            sage: A3 = AffineSpace(QQ,3)
            sage: A3.Hom(A2)    # indirect doctest
            Set of morphisms
              From: Affine Space of dimension 3 over Rational Field
              To:   Affine Space of dimension 2 over Rational Field
            sage: from sage.schemes.generic.homset import SchemeHomsetFactory
            sage: SHOMfactory = SchemeHomsetFactory('test')
            sage: key, extra = SHOMfactory.create_key_and_extra_args(A3,A2,check=False)
            sage: key
            (..., ..., Category of schemes over Integer Ring)
            sage: extra
            {'Y': Affine Space of dimension 2 over Rational Field,
             'X': Affine Space of dimension 3 over Rational Field,
             'base_ring': Integer Ring, 'check': False}
        """
        if not is_Scheme(X) and is_CommutativeRing(X):
            X = Spec(X)
        if not is_Scheme(Y) and is_CommutativeRing(Y):
            Y = Spec(Y)
        if is_Spec(base):
            base_spec = base
            base_ring = base.coordinate_ring()
        elif is_CommutativeRing(base):
            base_spec = Spec(base)
            base_ring = base
        else:
            raise ValueError(
                        'The base must be a commutative ring or its spectrum.')
        if not category:
            from sage.categories.schemes import Schemes
            category = Schemes(base_spec)
        key = tuple([id(X), id(Y), category])
        extra = {'X':X, 'Y':Y, 'base_ring':base_ring, 'check':check}
        return key, extra
开发者ID:ingolfured,项目名称:sageproject,代码行数:57,代码来源:homset.py

示例2: __init__

    def __init__(self, A):
        """
        EXAMPLES::

            sage: CommutativeAlgebraIdeals(ZZ['x'])
            Category of commutative algebra ideals in Univariate Polynomial Ring in x over Integer Ring

            sage: CommutativeAlgebraIdeals(ZZ)
            Traceback (most recent call last):
            ...
            TypeError: A (=Integer Ring) must be a commutative algebra

            sage: CommutativeAlgebraIdeals(IntegerModRing(4))
            Traceback (most recent call last):
            ...
            TypeError: A (=Ring of integers modulo 4) must be a commutative algebra

            sage: CommutativeAlgebraIdeals(Partitions(4))
            Traceback (most recent call last):
            ...
            TypeError: A (=Partitions of the integer 4) must be a commutative algebra

        TESTS::

            sage: TestSuite(CommutativeAlgebraIdeals(QQ[x])).run()
        """
        # TODO: replace by ``A in CommutativeAlgebras(*)`` once a
        # suitable mantra has been implemented for this.
        from sage.algebras.algebra import is_Algebra
        from sage.rings.commutative_ring import is_CommutativeRing
        if not (is_Algebra(A) and is_CommutativeRing(A)):
            raise TypeError("A (=%s) must be a commutative algebra"%A)
        Category_in_ambient.__init__(self, A)
开发者ID:Etn40ff,项目名称:sage,代码行数:33,代码来源:commutative_algebra_ideals.py

示例3: __init__

    def __init__(self, R, S=None):
        """
        Construct the spectrum of the ring ``R``.

        See :class:`Spec` for details.

        EXAMPLES::

            sage: Spec(ZZ)
            Spectrum of Integer Ring
        """
        if not is_CommutativeRing(R):
            raise TypeError, "R (=%s) must be a commutative ring"%R
        self.__R = R
        if not S is None:
            if not is_CommutativeRing(S):
                raise TypeError, "S (=%s) must be a commutative ring"%S
            try:
                S.hom(R)
            except TypeError:
                raise ValueError, "There must be a natural map S --> R, but S = %s and R = %s"%(S,R)
        AffineScheme.__init__(self, S)
开发者ID:chos9,项目名称:sage,代码行数:22,代码来源:spec.py

示例4: canonical_parameters

def canonical_parameters(group, weight, sign, base_ring):
    """
    Return the canonically normalized parameters associated to a choice
    of group, weight, sign, and base_ring. That is, normalize each of
    these to be of the correct type, perform all appropriate type
    checking, etc.

    EXAMPLES::

        sage: p1 = sage.modular.modsym.modsym.canonical_parameters(5,int(2),1,QQ) ; p1
        (Congruence Subgroup Gamma0(5), 2, 1, Rational Field)
        sage: p2 = sage.modular.modsym.modsym.canonical_parameters(Gamma0(5),2,1,QQ) ; p2
        (Congruence Subgroup Gamma0(5), 2, 1, Rational Field)
        sage: p1 == p2
        True
        sage: type(p1[1])
        <type 'sage.rings.integer.Integer'>
    """
    sign = rings.Integer(sign)
    if not (sign in [-1,0,1]):
        raise ValueError, "sign must be -1, 0, or 1"

    weight = rings.Integer(weight)
    if weight <= 1:
        raise ValueError, "the weight must be at least 2"

    if isinstance(group, (int, rings.Integer)):
        group = arithgroup.Gamma0(group)

    elif isinstance(group, dirichlet.DirichletCharacter):
        try:
            eps = group.minimize_base_ring()
        except NotImplementedError:
        # TODO -- implement minimize_base_ring over finite fields
            eps = group
        G = eps.parent()
        if eps.is_trivial():
            group = arithgroup.Gamma0(eps.modulus())
        else:
            group = (eps, G)
        if base_ring is None: base_ring = eps.base_ring()

    if base_ring is None: base_ring = rational_field.RationalField()

    if not is_CommutativeRing(base_ring):
        raise TypeError, "base_ring (=%s) must be a commutative ring"%base_ring

    if not base_ring.is_field():
        raise TypeError, "(currently) base_ring (=%s) must be a field"%base_ring

    return group, weight, sign, base_ring
开发者ID:NitikaAgarwal,项目名称:sage,代码行数:51,代码来源:modsym.py

示例5: __call__

    def __call__(self, x):
        """
        Call syntax for Spec.

        INPUT/OUTPUT:

        The argument ``x`` must be one of the following:

        - a prime ideal of the coordinate ring; the output will
          be the corresponding point of X

        - an element (or list of elements) of the coordinate ring
          which generates a prime ideal; the output will be the
          corresponding point of X

        - a ring or a scheme S; the output will be the set X(S) of
          S-valued points on X

        EXAMPLES::

            sage: S = Spec(ZZ)
            sage: P = S(3); P
            Point on Spectrum of Integer Ring defined by the Principal ideal (3) of Integer Ring
            sage: type(P)
            <class 'sage.schemes.generic.point.SchemeTopologicalPoint_prime_ideal'>
            sage: S(ZZ.ideal(next_prime(1000000)))
            Point on Spectrum of Integer Ring defined by the Principal ideal (1000003) of Integer Ring

            sage: R.<x, y, z> = QQ[]
            sage: S = Spec(R)
            sage: P = S(R.ideal(x, y, z)); P
            Point on Spectrum of Multivariate Polynomial Ring
            in x, y, z over Rational Field defined by the Ideal (x, y, z)
            of Multivariate Polynomial Ring in x, y, z over Rational Field

        This indicates the fix of :trac:`12734`::
            sage: S = Spec(ZZ)
            sage: S(ZZ)
            Set of rational points of Spectrum of Integer Ring
            sage: S(S)
            Set of rational points of Spectrum of Integer Ring
        """
        if is_CommutativeRing(x):
            return self.point_homset(x)
        from sage.schemes.all import is_Scheme

        if is_Scheme(x):
            return x.Hom(self)

        return SchemeTopologicalPoint_prime_ideal(self, x)
开发者ID:jeromeca,项目名称:sagesmc,代码行数:50,代码来源:spec.py

示例6: __init__

    def __init__(self, N, R = QQ, names = None):
        r"""
        The Python constructor

        INPUT:

        - ``N`` - a list or tuple of positive integers

        - ``R`` - a ring

        - ``names`` - a tuple or list of strings. This must either be a single variable name
                    or the complete list of variables.

        EXAMPLES::

            sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2,2],QQ)
            sage: T
            Product of projective spaces P^2 x P^2 over Rational Field
            sage: T.coordinate_ring()
            Multivariate Polynomial Ring in x, y, z, u, v, w over Rational Field
            sage: T[1].coordinate_ring()
            Multivariate Polynomial Ring in u, v, w over Rational Field

        ::

            sage: ProductProjectiveSpaces([1,1,1],ZZ, ['x','y','z','u','v','w'])
            Product of projective spaces P^1 x P^1 x P^1 over Integer Ring

        ::

            sage: T = ProductProjectiveSpaces([1,1],QQ,'z')
            sage: T.coordinate_ring()
            Multivariate Polynomial Ring in z0, z1, z2, z3 over Rational Field
        """
        assert isinstance(N, (tuple, list))
        N = [Integer(n) for n in N]
        assert is_CommutativeRing(R)
        if len(N) < 2:
            raise ValueError("Must be at least two components for a product")
        AmbientSpace.__init__(self, sum(N), R)
        self._dims = N
        start = 0
        self._components = []
        for i in range(len(N)):
            self._components.append(ProjectiveSpace(N[i],R,names[start:start+N[i]+1]))
            start += N[i]+1
        #Note that the coordinate ring should really be the tensor product of the component
        #coordinate rings. But we just deal with them as multihomogeneous polynomial rings
        self._coordinate_ring = PolynomialRing(R,sum(N)+ len(N),names)
开发者ID:aaditya-thakkar,项目名称:sage,代码行数:49,代码来源:space.py

示例7: __init__

    def __init__(self, n, R=ZZ):
        """
        TEST::

            sage: from sage.schemes.generic.ambient_space import AmbientSpace
            sage: A = AmbientSpace(5, ZZ)
            sage: TestSuite(A).run() # not tested (abstract scheme with no elements?)
        """
        if not is_CommutativeRing(R):
            raise TypeError("R (=%s) must be a commutative ring"%R)
        n = Integer(n)
        if n < 0:
            raise ValueError("n (=%s) must be nonnegative"%n)
        self._dimension_relative = n
        Scheme.__init__(self, R)
开发者ID:DrXyzzy,项目名称:sage,代码行数:15,代码来源:ambient_space.py

示例8: __init__

    def __init__(self, X=None, category=None):
        """
        Construct a scheme.

        TESTS:

        The full test suite works since :trac:`7946`::

            sage: R.<x, y> = QQ[]
            sage: I = (x^2 - y^2)*R
            sage: RmodI = R.quotient(I)
            sage: X = Spec(RmodI)
            sage: TestSuite(X).run()

        """
        from sage.schemes.generic.morphism import is_SchemeMorphism

        if X is None:
            self._base_ring = ZZ
        elif is_Scheme(X):
            self._base_scheme = X
        elif is_SchemeMorphism(X):
            self._base_morphism = X
        elif is_CommutativeRing(X):
            self._base_ring = X
        elif is_RingHomomorphism(X):
            self._base_ring = X.codomain()
        else:
            raise ValueError('The base must be define by a scheme, '
                             'scheme morphism, or commutative ring.')

        from sage.categories.schemes import Schemes
        if X is None:
            default_category = Schemes()
        else:
            default_category = Schemes(self.base_scheme())
        if category is None:
            category = default_category
        else:
            assert category.is_subcategory(default_category), \
                "%s is not a subcategory of %s"%(category, default_category)

        Parent.__init__(self, self.base_ring(), category = category)
开发者ID:DrXyzzy,项目名称:sage,代码行数:43,代码来源:scheme.py

示例9: base_extend

    def base_extend(self, R):
        """
        Extend the base ring/scheme.

        INPUT:

        - ``R`` -- an affine scheme or a commutative ring.

        EXAMPLES::

            sage: Spec_ZZ = Spec(ZZ);  Spec_ZZ
            Spectrum of Integer Ring
            sage: Spec_ZZ.base_extend(QQ)
            Spectrum of Rational Field
        """
        if is_CommutativeRing(R):
            return Spec(self.coordinate_ring().base_extend(R), self.base_ring())
        if not self.base_scheme() == R.base_scheme():
            raise ValueError("The new base scheme must be a scheme over the old base scheme.")
        return Spec(self.coordinate_ring().base_extend(new_base.coordinate_ring()), self.base_ring())
开发者ID:jeromeca,项目名称:sagesmc,代码行数:20,代码来源:spec.py

示例10: base_extend

    def base_extend(self, R):
        """
        Return the natural extension of ``self`` over ``R``.

        INPUT:

        - ``R`` -- a commutative ring, such that there is a natural map from
          the base ring of self to ``R``.

        OUTPUT:

        - an ambient space over ``R`` of the same structure as ``self``.

        .. NOTE::

            A ``ValueError`` is raised if there is no such natural map. If
            you need to drop this condition, use ``self.change_ring(R)``.

        EXAMPLES::

            sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
            sage: PQ = P.base_extend(QQ); PQ
            Projective Space of dimension 2 over Rational Field
            sage: PQ.base_extend(GF(5))
            Traceback (most recent call last):
            ...
            ValueError: no natural map from the base ring (=Rational Field)
            to R (=Finite Field of size 5)!
        """
        if is_CommutativeRing(R):
            if self.base_ring() == R:
                return self
            if not R.has_coerce_map_from(self.base_ring()):
                raise ValueError(
                    "no natural map from the base ring (=%s) to R (=%s)!"
                    % (self.base_ring(), R))
            return self.change_ring(R)
        else:
            raise NotImplementedError(
                        "extension of spaces over %s to %s is not implemented!"
                        % (self.base_ring(), R))
开发者ID:DrXyzzy,项目名称:sage,代码行数:41,代码来源:ambient_space.py

示例11: __init__

    def __init__(self, abvar, base):
        """
        This is an abstract base class, so it is called implicitly in the
        following examples.

        EXAMPLES::

            sage: H = J0(43).integral_homology()
            sage: type(H)
            <class 'sage.modular.abvar.homology.IntegralHomology_with_category'>

        TESTS::

            sage: H = J0(43).integral_homology()
            sage: loads(dumps(H)) == H
            True
        """
        if not is_CommutativeRing(base):
            raise TypeError, "base ring must be a commutative ring"
        HeckeModule_free_module.__init__(
            self, base, abvar.level(), weight=2)
        self.__abvar = abvar
开发者ID:NitikaAgarwal,项目名称:sage,代码行数:22,代码来源:homology.py

示例12: __call__

    def __call__(self, *args):
        """
        Call syntax for schemes.

        INPUT/OUTPUT:

        The arguments must be one of the following:

        - a ring or a scheme `S`. Output will be the set `X(S)` of
          `S`-valued points on `X`.

        - If `S` is a list or tuple or just the coordinates, return a
          point in `X(T)`, where `T` is the base scheme of self.

        EXAMPLES::

            sage: A = AffineSpace(2, QQ)

        We create some point sets::

            sage: A(QQ)
            Set of rational points of Affine Space of dimension 2 over Rational Field
            sage: A(RR)
            Set of rational points of Affine Space of dimension 2 over Real Field
            with 53 bits of precision

        Space of dimension 2 over Rational Field::

            sage: R.<x> = PolynomialRing(QQ)
            sage: A(NumberField(x^2+1, 'a'))
            Set of rational points of Affine Space of dimension 2 over Number Field
            in a with defining polynomial x^2 + 1
            sage: A(GF(7))
            Traceback (most recent call last):
            ...
            ValueError: There must be a natural map S --> R, but
            S = Rational Field and R = Finite Field of size 7

        We create some points::

            sage: A(QQ)([1,0])
            (1, 0)

        We create the same point by giving the coordinates of the point
        directly::

            sage: A( 1,0 )
            (1, 0)
        """
        if len(args) == 0:
            raise TypeError('You need to specify at least one argument.')

        S = args[0]
        if is_CommutativeRing(S):
            return self.point_homset(S)
        if is_Scheme(S):
            return S.Hom(self)
        from sage.schemes.generic.morphism import SchemeMorphism_point
        if isinstance(S, (list, tuple)):
            args = S
        elif isinstance(S, SchemeMorphism_point):
            if S.codomain() == self:
                return S
        else:
            # TODO: fix circular import resulting from non-multiple inheritance
            from sage.schemes.elliptic_curves.ell_point import EllipticCurvePoint_field
            if isinstance(S, EllipticCurvePoint_field):
                if S.codomain() == self:
                    return S
                else:
                    return self.point(S)
        return self.point(args)
开发者ID:cswiercz,项目名称:sage,代码行数:72,代码来源:scheme.py

示例13: _is_valid_homomorphism_

    def _is_valid_homomorphism_(self, codomain, im_gens):
        """
        Replacement for method of PowerSeriesRing_generic.

        To be valid, a homomorphism must send generators to elements of
        positive valuation or to nilpotent elements.

        Note that the method is_nilpotent doesn't (as of sage 4.4) seem to
        be defined for obvious examples (matrices, quotients of polynomial
        rings).

        EXAMPLES::

            sage: R.<a,b,c> = PowerSeriesRing(Zmod(8)); R
            Multivariate Power Series Ring in a, b, c over Ring of integers
            modulo 8
            sage: M = PowerSeriesRing(ZZ,3,'x,y,z');
            sage: M._is_valid_homomorphism_(R,[a,c,b])
            True

            sage: M._is_valid_homomorphism_(R,[0,c,b])
            True

        2 is nilpotent in `ZZ/8`, but 3 is not::

            sage: M._is_valid_homomorphism_(R,[2,c,b])
            True
            sage: M._is_valid_homomorphism_(R,[3,c,b])
            False

        Over `ZZ`, 2 is not nilpotent::

            sage: S = R.change_ring(ZZ); S
            Multivariate Power Series Ring in a, b, c over Integer Ring
            sage: M._is_valid_homomorphism_(S,[a,c,b])
            True
            sage: M._is_valid_homomorphism_(S,[0,c,b])
            True
            sage: M._is_valid_homomorphism_(S,[2,c,b])
            False

            sage: g = [S.random_element(10)*v for v in S.gens()]
            sage: M._is_valid_homomorphism_(S,g)
            True
        """
        try:
            im_gens = [codomain(v) for v in im_gens]
        except TypeError:
            raise TypeError("The given generator images do not coerce to codomain.")

        if len(im_gens) is not self.ngens():
            raise ValueError("You must specify the image of each generator.")
        if all(v == 0 for v in im_gens):
            return True
        if is_MPowerSeriesRing(codomain) or is_PowerSeriesRing(codomain):
            try:
                B = all(v.valuation() > 0 or v.is_nilpotent() for v in im_gens)
            except NotImplementedError:
                B = all(v.valuation() > 0 for v in im_gens)
            return B
        if is_CommutativeRing(codomain):
            return all(v.is_nilpotent() for v in im_gens)
开发者ID:sageb0t,项目名称:testsage,代码行数:62,代码来源:multi_power_series_ring.py

示例14: canonical_parameters

def canonical_parameters(group, level, weight, base_ring):
    """
    Given a group, level, weight, and base_ring as input by the user,
    return a canonicalized version of them, where level is a Sage
    integer, group really is a group, weight is a Sage integer, and
    base_ring a Sage ring. Note that we can't just get the level from
    the group, because we have the convention that the character for
    Gamma1(N) is None (which makes good sense).

    INPUT:


    -  ``group`` - int, long, Sage integer, group,
       dirichlet character, or

    -  ``level`` - int, long, Sage integer, or group

    -  ``weight`` - coercible to Sage integer

    -  ``base_ring`` - commutative Sage ring


    OUTPUT:


    -  ``level`` - Sage integer

    -  ``group`` - congruence subgroup

    -  ``weight`` - Sage integer

    -  ``ring`` - commutative Sage ring


    EXAMPLES::

        sage: from sage.modular.modform.constructor import canonical_parameters
        sage: v = canonical_parameters(5, 5, int(7), ZZ); v
        (5, Congruence Subgroup Gamma0(5), 7, Integer Ring)
        sage: type(v[0]), type(v[1]), type(v[2]), type(v[3])
        (<type 'sage.rings.integer.Integer'>,
         <class 'sage.modular.arithgroup.congroup_gamma0.Gamma0_class_with_category'>,
         <type 'sage.rings.integer.Integer'>,
         <type 'sage.rings.integer_ring.IntegerRing_class'>)
        sage: canonical_parameters( 5, 7, 7, ZZ )
        Traceback (most recent call last):
        ...
        ValueError: group and level do not match.
    """
    weight = rings.Integer(weight)
    if weight <= 0:
        raise NotImplementedError, "weight must be at least 1"

    if isinstance(group, dirichlet.DirichletCharacter):
        if ( group.level() != rings.Integer(level) ):
            raise ValueError, "group.level() and level do not match."
        group = group.minimize_base_ring()
        level = rings.Integer(level)

    elif arithgroup.is_CongruenceSubgroup(group):
        if ( rings.Integer(level) != group.level() ):
            raise ValueError, "group.level() and level do not match."
        # normalize the case of SL2Z
        if arithgroup.is_SL2Z(group) or \
           arithgroup.is_Gamma1(group) and group.level() == rings.Integer(1):
            group = arithgroup.Gamma0(rings.Integer(1))

    elif group is None:
        pass

    else:
        try:
            m = rings.Integer(group)
        except TypeError:
            raise TypeError, "group of unknown type."
        level = rings.Integer(level)
        if ( m != level ):
            raise ValueError, "group and level do not match."
        group = arithgroup.Gamma0(m)

    if not is_CommutativeRing(base_ring):
        raise TypeError, "base_ring (=%s) must be a commutative ring"%base_ring

    # it is *very* important to include the level as part of the data
    # that defines the key, since dirichlet characters of different
    # levels can compare equal, but define much different modular
    # forms spaces.
    return level, group, weight, base_ring
开发者ID:NitikaAgarwal,项目名称:sage,代码行数:88,代码来源:constructor.py

示例15: __call__

    def __call__(self, *args):
        """
        Call syntax for schemes.

        INPUT/OUTPUT:

        The arguments must be one of the following:

        - a ring or a scheme `S`. Output will be the set `X(S)` of
          `S`-valued points on `X`.

        - If `S` is a list or tuple or just the coordinates, return a
          point in `X(T)`, where `T` is the base scheme of self.

        EXAMPLES::

            sage: A = AffineSpace(2, QQ)

        We create some point sets::

            sage: A(QQ)
            Set of rational points of Affine Space of dimension 2 over Rational Field
            sage: A(RR)
            Set of rational points of Affine Space of dimension 2 over Real Field
            with 53 bits of precision

        Space of dimension 2 over Rational Field::

            sage: R.<x> = PolynomialRing(QQ)
            sage: A(NumberField(x^2+1, 'a'))
            Set of rational points of Affine Space of dimension 2 over Number Field
            in a with defining polynomial x^2 + 1
            sage: A(GF(7))
            Traceback (most recent call last):
            ...
            ValueError: There must be a natural map S --> R, but
            S = Rational Field and R = Finite Field of size 7

        We create some points::

            sage: A(QQ)([1, 0])
            (1, 0)

        We create the same point by giving the coordinates of the point
        directly::

            sage: A(1, 0)
            (1, 0)

        Check that :trac:`16832` is fixed::

            sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2)
            sage: X=P.subscheme(x^2 - y^2)
            sage: X(P([4, 4, 1]))
            (4 : 4 : 1)
        """
        if len(args) == 1:
            from sage.schemes.generic.morphism import SchemeMorphism_point
            S = args[0]
            if is_CommutativeRing(S):
                return self.point_homset(S)
            elif is_Scheme(S):
                return S.Hom(self)
            elif isinstance(S, (list, tuple)):
                args = S
            elif isinstance(S, SchemeMorphism_point):
                if S.codomain() is self:
                    return S
                args = S
        return self.point(args)
开发者ID:DrXyzzy,项目名称:sage,代码行数:70,代码来源:scheme.py


注:本文中的sage.rings.commutative_ring.is_CommutativeRing函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。