本文整理汇总了Python中sage.rings.arith.euler_phi函数的典型用法代码示例。如果您正苦于以下问题:Python euler_phi函数的具体用法?Python euler_phi怎么用?Python euler_phi使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了euler_phi函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ncusps
def ncusps(self):
r"""
Return the number of orbits of cusps (regular or otherwise) for this subgroup.
EXAMPLE::
sage: GammaH(33,[2]).ncusps()
8
sage: GammaH(32079, [21676]).ncusps()
28800
AUTHORS:
- Jordi Quer
"""
N = self.level()
H = self._list_of_elements_in_H()
c = ZZ(0)
for d in [d for d in N.divisors() if d**2 <= N]:
Nd = lcm(d,N//d)
Hd = set([x % Nd for x in H])
lenHd = len(Hd)
if Nd-1 not in Hd: lenHd *= 2
summand = euler_phi(d)*euler_phi(N//d)//lenHd
if d**2 == N:
c = c + summand
else:
c = c + 2*summand
return c
示例2: num_cusps_of_width
def num_cusps_of_width(N, d):
r"""
Return the number of cusps on `X_0(N)` of width d.
INPUT:
- ``N`` - (integer): the level
- ``d`` - (integer): an integer dividing N, the cusp
width
EXAMPLES::
sage: [num_cusps_of_width(18,d) for d in divisors(18)]
[1, 1, 2, 2, 1, 1]
sage: num_cusps_of_width(4,8)
Traceback (most recent call last):
...
ValueError: N and d must be positive integers with d|N
"""
N = ZZ(N)
d = ZZ(d)
if N <= 0 or d <= 0 or (N % d) != 0:
raise ValueError("N and d must be positive integers with d|N")
return euler_phi(gcd(d, N//d))
示例3: num_cusps_of_width
def num_cusps_of_width(N, d):
r"""
Return the number of cusps on `X_0(N)` of width d.
INPUT:
- ``N`` - (integer): the level
- ``d`` - (integer): an integer dividing N, the cusp
width
EXAMPLES::
sage: [num_cusps_of_width(18,d) for d in divisors(18)]
[1, 1, 2, 2, 1, 1]
"""
try:
N = ZZ(N)
d = ZZ(d)
assert N>0
assert d>0
assert ((N % d) == 0)
except TypeError:
raise TypeError, "N and d must be integers"
except AssertionError:
raise AssertionError, "N and d must be positive integers with d|N"
return euler_phi(gcd(d, N//d))
示例4: cardinality
def cardinality(self):
"""
Returns the number of integer necklaces with the evaluation e.
EXAMPLES::
sage: Necklaces([]).cardinality()
0
sage: Necklaces([2,2]).cardinality()
2
sage: Necklaces([2,3,2]).cardinality()
30
Check to make sure that the count matches up with the number of
Lyndon words generated.
::
sage: comps = [[],[2,2],[3,2,7],[4,2]]+Compositions(4).list()
sage: ns = [ Necklaces(comp) for comp in comps]
sage: all( [ n.cardinality() == len(n.list()) for n in ns] )
True
"""
evaluation = self.e
le = list(evaluation)
if len(le) == 0:
return 0
n = sum(le)
return sum([euler_phi(j)*factorial(n/j) / prod([factorial(ni/j) for ni in evaluation]) for j in divisors(gcd(le))])/n
示例5: nu2
def nu2(self):
r"""
Return the number of orbits of elliptic points of order 2 for this
group.
EXAMPLE::
sage: [H.nu2() for n in [1..10] for H in Gamma0(n).gamma_h_subgroups()]
[1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0]
sage: GammaH(33,[2]).nu2()
0
sage: GammaH(5,[2]).nu2()
2
AUTHORS:
- Jordi Quer
"""
N = self.level()
H = self._list_of_elements_in_H()
if N % 4 == 0: return ZZ(0)
for p, r in N.factor():
if p % 4 == 3: return ZZ(0)
return (euler_phi(N) // len(H))*len([x for x in H if (x**2 + 1) % N == 0])
示例6: nu3
def nu3(self):
r"""
Return the number of orbits of elliptic points of order 3 for this
group.
EXAMPLE::
sage: [H.nu3() for n in [1..10] for H in Gamma0(n).gamma_h_subgroups()]
[1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
sage: GammaH(33,[2]).nu3()
0
sage: GammaH(7,[2]).nu3()
2
AUTHORS:
- Jordi Quer
"""
N = self.level()
H = self._list_of_elements_in_H()
if N % 9 == 0: return ZZ(0)
for p, r in N.factor():
if p % 3 == 2: return ZZ(0)
lenHpm = len(H)
if N - ZZ(1) not in H: lenHpm*=2
return (euler_phi(N)//lenHpm)*len([x for x in H if (x**2+x+1) % N == 0])
示例7: GammaH_constructor
def GammaH_constructor(level, H):
r"""
Return the congruence subgroup `\Gamma_H(N)`, which is the subgroup of
`SL_2(\ZZ)` consisting of matrices of the form `\begin{pmatrix} a & b \\
c & d \end{pmatrix}` with `N | c` and `a, b \in H`, for `H` a specified
subgroup of `(\ZZ/N\ZZ)^\times`.
INPUT:
- level -- an integer
- H -- either 0, 1, or a list
* If H is a list, return `\Gamma_H(N)`, where `H`
is the subgroup of `(\ZZ/N\ZZ)^*` **generated** by the
elements of the list.
* If H = 0, returns `\Gamma_0(N)`.
* If H = 1, returns `\Gamma_1(N)`.
EXAMPLES::
sage: GammaH(11,0) # indirect doctest
Congruence Subgroup Gamma0(11)
sage: GammaH(11,1)
Congruence Subgroup Gamma1(11)
sage: GammaH(11,[10])
Congruence Subgroup Gamma_H(11) with H generated by [10]
sage: GammaH(11,[10,1])
Congruence Subgroup Gamma_H(11) with H generated by [10]
sage: GammaH(14,[10])
Traceback (most recent call last):
...
ArithmeticError: The generators [10] must be units modulo 14
"""
from all import Gamma0, Gamma1, SL2Z
if level == 1:
return SL2Z
elif H == 0:
return Gamma0(level)
elif H == 1:
return Gamma1(level)
H = _normalize_H(H, level)
if H == []:
return Gamma1(level)
Hlist = _list_subgroup(level, H)
if len(Hlist) == euler_phi(level):
return Gamma0(level)
key = (level, tuple(H))
try:
return _gammaH_cache[key]
except KeyError:
_gammaH_cache[key] = GammaH_class(level, H, Hlist)
return _gammaH_cache[key]
示例8: unit_group_order
def unit_group_order(self):
"""
Return the order of the unit group of this residue class ring.
EXAMPLES::
sage: R = Integers(500)
sage: R.unit_group_order()
200
"""
return euler_phi(self.order())
示例9: ncusps
def ncusps(self):
r"""
Return the number of cusps of this subgroup `\Gamma_0(N)`.
EXAMPLES::
sage: [Gamma0(n).ncusps() for n in [1..19]]
[1, 2, 2, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 4, 6, 2, 8, 2]
sage: [Gamma0(n).ncusps() for n in prime_range(2,100)]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
"""
n = self.level()
return sum([arith.euler_phi(arith.gcd(d,n//d)) for d in n.divisors()])
示例10: nregcusps
def nregcusps(self):
r"""
Return the number of orbits of regular cusps for this subgroup. A cusp is regular
if we may find a parabolic element generating the stabiliser of that
cusp whose eigenvalues are both +1 rather than -1. If G contains -1,
all cusps are regular.
EXAMPLES::
sage: GammaH(20, [17]).nregcusps()
4
sage: GammaH(20, [17]).nirregcusps()
2
sage: GammaH(3212, [2045, 2773]).nregcusps()
1440
sage: GammaH(3212, [2045, 2773]).nirregcusps()
720
AUTHOR:
- Jordi Quer
"""
if self.is_even():
return self.ncusps()
N = self.level()
H = self._list_of_elements_in_H()
c = ZZ(0)
for d in [d for d in divisors(N) if d**2 <= N]:
Nd = lcm(d,N//d)
Hd = set([x%Nd for x in H])
if Nd - 1 not in Hd:
summand = euler_phi(d)*euler_phi(N//d)//(2*len(Hd))
if d**2==N:
c = c + summand
else:
c = c + 2*summand
return c
示例11: __init__
def __init__(self, N, q, D, poly=None, secret_dist='uniform', m=None):
"""
Construct a Ring-LWE oracle in dimension ``n=phi(N)`` over a ring of order
``q`` with noise distribution ``D``.
INPUT:
- ``N`` - index of cyclotomic polynomial (integer > 0, must be power of 2)
- ``q`` - modulus typically > N (integer > 0)
- ``D`` - an error distribution such as an instance of
:class:`DiscreteGaussianDistributionPolynomialSampler` or :class:`UniformSampler`
- ``poly`` - a polynomial of degree ``phi(N)``. If ``None`` the
cyclotomic polynomial used (default: ``None``).
- ``secret_dist`` - distribution of the secret. See documentation of
:class:`LWE` for details (default='uniform')
- ``m`` - number of allowed samples or ``None`` if no such limit exists
(default: ``None``)
EXAMPLE::
sage: from sage.crypto.lwe import RingLWE
sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=euler_phi(20), sigma=3.0)
sage: RingLWE(N=20, q=next_prime(800), D=D);
RingLWE(20, 809, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 - x^6 + x^4 - x^2 + 1, 'uniform', None)
"""
self.N = ZZ(N)
self.n = euler_phi(N)
self.m = m
self.__i = 0
self.K = IntegerModRing(q)
if self.n != D.n:
raise ValueError("Noise distribution has dimensions %d != %d"%(D.n, self.n))
self.D = D
self.q = q
if poly is not None:
self.poly = poly
else:
self.poly = cyclotomic_polynomial(self.N, 'x')
self.R_q = self.K['x'].quotient(self.poly, 'x')
self.secret_dist = secret_dist
if secret_dist == 'uniform':
self.__s = self.R_q.random_element() # uniform sampling of secret
elif secret_dist == 'noise':
self.__s = self.D()
else:
raise TypeError("Parameter secret_dist=%s not understood."%(secret_dist))
示例12: find_m
def find_m(n, k, bound = None):
'''
INPUT : an integers n, a base field k, an integer bound
OUTPUT : an integer
Algorithm :
Functions that given an integer n (degree of an extension) and a bound
returns all the candidates m, such that :
- n|phi(m), the euler totient function,
- (n, phi(m)/n) = 1,
- Another one ? Maybe for q = p^d we'd want (n,d) = 1,
We can note that if m = r^e with (e-1,n) = 1 or e = 1, then r = a*n + 1 with
(a,n) = 1 is a suitable form for m as then phi(m) = (a*n)(an + 1)^(e-1);
It also works in the general case if all the prime factors of m are of the
form a*n + 1 with (a,n) = 1. You just have to apply that to them and
multiply the results.
'''
if bound is None:
bound_a = 100 # Arbitrary value.
else:
# if m = a*n + 1 < b, then a < (b- 1)/n.
bound_a = (bound - 1) / n
sol = []
for a in range(bound_a):
m = a*n + 1
# m composite not implemented yet
if not m.is_prime_power():
continue
elif (euler_phi(m)/n).gcd(n) != 1:
continue
else:
S_t = find_trace(n, m, k)
if len(S_t) < 1: # Some time in the future we'd like to have a
continue # better bound than just 1.
else:
return m, S_t
示例13: cardinality
def cardinality(self):
r"""
Return the number of integer necklaces with the evaluation ``content``.
The formula for the number of necklaces of content `\alpha`
a composition of `n` is:
.. MATH::
\sum_{d|gcd(\alpha)} \phi(d)
\binom{n/d}{\alpha_1/d, \ldots, \alpha_\ell/d},
where `\phi(d)` is the Euler `\phi` function.
EXAMPLES::
sage: Necklaces([]).cardinality()
0
sage: Necklaces([2,2]).cardinality()
2
sage: Necklaces([2,3,2]).cardinality()
30
sage: Necklaces([0,3,2]).cardinality()
2
Check to make sure that the count matches up with the number of
necklace words generated.
::
sage: comps = [[],[2,2],[3,2,7],[4,2],[0,4,2],[2,0,4]]+Compositions(4).list()
sage: ns = [ Necklaces(comp) for comp in comps]
sage: all( [ n.cardinality() == len(n.list()) for n in ns] )
True
"""
evaluation = self._content
le = list(evaluation)
if not le:
return 0
n = sum(le)
return sum(euler_phi(j)*factorial(n/j) / prod(factorial(ni/j)
for ni in evaluation) for j in divisors(gcd(le))) / n
示例14: processDirichletNavigation
def processDirichletNavigation(args):
s = '<table>\n'
s += '<tr>\n<th scope="col">Characters</th>\n</tr>\n'
for i in range(0, euler_phi(modulus)):
s += '<tr>\n<th scope="row">' + str(i) + '</th>\n'
s += '<td>\n'
j = i - N
for k in range(len(chars[j][1])):
s += '<a style=\'display:inline\' href="Character/Dirichlet/'
s += str(i)
s += '/'
s += str(chars[j][1][k])
s += '/&numcoeff='
s += str(numcoeff)
s += '">'
s += '\(\chi_{' + str(chars[j][1][k]) + '}\)</a> '
s += '</td>\n</tr>\n'
s += '</table>\n'
return s
示例15: __cmp__
def __cmp__(self, other):
"""
Compare self to other.
The ordering on congruence subgroups of the form GammaH(N) for
some H is first by level and then by the subgroup H. In
particular, this means that we have Gamma1(N) < GammaH(N) <
Gamma0(N) for every nontrivial subgroup H.
EXAMPLES::
sage: G = Gamma0(86)
sage: G.__cmp__(G)
0
sage: G.__cmp__(GammaH(86, [11])) is not 0
True
sage: Gamma1(17) < Gamma0(17)
True
sage: Gamma0(1) == SL2Z
True
sage: Gamma0(11) == GammaH(11, [2])
True
sage: Gamma0(2) == Gamma1(2)
True
"""
if not is_CongruenceSubgroup(other):
return cmp(type(self), type(other))
c = cmp(self.level(), other.level())
if c: return c
# Since Gamma0(N) is GammaH(N) for H all of (Z/N)^\times,
# we know how to compare it to any other GammaH without having
# to look at self._list_of_elements_in_H().
from all import is_GammaH, is_Gamma0
if is_GammaH(other):
if is_Gamma0(other):
return 0
else:
H = other._list_of_elements_in_H()
return cmp(len(H), arith.euler_phi(self.level()))
return cmp(type(self), type(other))